ﻻ يوجد ملخص باللغة العربية
A procedure for the numerical approximation of high-dimensional Hamilton-Jacobi-Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation of the PDE dynamics, and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is known as the Successive Galerkin Approximation. It can also be interpreted as Newton iteration for the HJB equation. At every step, the associated linear Generalized HJB equation is approximated via a separable polynomial approximation ansatz. Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of dimension up to fourteen.
We propose an approach for the synthesis of robust and optimal feedback controllers for nonlinear PDEs. Our approach considers the approximation of infinite-dimensional control systems by a pseudospectral collocation method, leading to high-dimension
The approximation of solutions to second order Hamilton--Jacobi--Bellman (HJB) equations by deep neural networks is investigated. It is shown that for HJB equations that arise in the context of the optimal control of certain Markov processes the solu
A tensor decomposition approach for the solution of high-dimensional, fully nonlinear Hamilton-Jacobi-Bellman equations arising in optimal feedback control of nonlinear dynamics is presented. The method combines a tensor train approximation for the v
Computing optimal feedback controls for nonlinear systems generally requires solving Hamilton-Jacobi-Bellman (HJB) equations, which are notoriously difficult when the state dimension is large. Existing strategies for high-dimensional problems often r
Policy iteration is a widely used technique to solve the Hamilton Jacobi Bellman (HJB) equation, which arises from nonlinear optimal feedback control theory. Its convergence analysis has attracted much attention in the unconstrained case. Here we ana