ﻻ يوجد ملخص باللغة العربية
The null distributed controllability of the semilinear heat equation $y_t-Delta y + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $g(s)/(vert svert log^{3/2}(1+vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that $g^primein L^infty_{loc}(mathbb{R})$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a fixed point argument makes use of precise estimates of the observability constant for a linearized heat equation. It does not provide however an explicit construction of a null control. Assuming that $g^primein W^{s,infty}(mathbb{R})$ for one $sin (0,1]$, we construct an explicit sequence converging strongly to a null control for the solution of the semilinear equation. The method, based on a least-squares approach, generalizes Newton type methods and guarantees the convergence whatever be the initial element of the sequence. In particular, after a finite number of iterations, the convergence is super linear with a rate equal to $1+s$. Numerical experiments in the one dimensional setting support our analysis.
The exact distributed controllability of the semilinear wave equation $y_{tt}-y_{xx} + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $vert g(s)vert /(vert svert log^{2}(vert svert))rightarrow 0$ as $vert svert rightarrow infty$
The epsilon alternating least squares ($epsilon$-ALS) is developed and analyzed for canonical polyadic decomposition (approximation) of a higher-order tensor where one or more of the factor matrices are assumed to be columnwisely orthonormal. It is s
We introduce and analyze a space-time least-squares method associated to the unsteady Navier-Stokes system. Weak solution in the two dimensional case and regular solution in the three dimensional case are considered. From any initial guess, we constr
It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $partial_{tt}y-partial_{xx}y + g(y)=f 1_{omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)cap L^2(0,1)$ with con
We conduct a study and comparison of superiorization and optimization approaches for the reconstruction problem of superiorized/regularized least-squares solutions of underdetermined linear equations with nonnegativity variable bounds. Regarding supe