ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold Bosons on a Regular Spherical Mesh

107   0   0.0 ( 0 )
 نشر من قبل Santi Prestipino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Santi Prestipino




اسأل ChatGPT حول البحث

I study the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh (Platonic mesh) and interacting through an extended Bose-Hubbard Hamiltonian. Only the hard-core version of the model is considered here, for two instances of Platonic mesh. Using the mean-field decoupling approximation, I show that the system may exist in various ground states, which can be regarded as analogs of gas, solid, supersolid, and superfluid. For one mesh, by comparing the theoretical results with the outcome of numerical diagonalization, I manage to uncover the signatures of diagonal and off-diagonal spatial orders in a finite quantum system.



قيم البحث

اقرأ أيضاً

167 - K.V. Krutitsky 2015
During the last decade, many exciting phenomena have been experimentally observed and theoretically predicted for ultracold atoms in optical lattices. This paper reviews these rapid developments concentrating mainly on the theory. Different types of the bosonic systems in homogeneous lattices of different dimensions as well as in the presence of harmonic traps are considered. An overview of the theoretical methods used for these investigations as well as of the obtained results is given. Available experimental techniques are presented and discussed in connection with theoretical considerations. Eigenstates of the interacting bosons in homogeneous lattices and in the presence of harmonic confinement are analysed. Their knowledge is essential for understanding of quantum phase transitions at zero and finite temperature.
We study the influence of quantum density fluctuations in ultracold atoms in an optical lattice on the scattering of matter waves. Such fluctuations are characteristic of the superfluid phase and vanish due to increased interactions in the Mott insul ating phase. We employ an analytical treatment of the scattering and demonstrate that the fluctuations lead to incoherent processes, which we propose to observe via decoherence of the fringes in a Mach-Zender interferometer. In this way we extract the purely coherent part of the scattering. Further, we show that the quantum density fluctuations can also be observed directly in the differential angular scattering cross section for an atomic beam scattered from the atoms in a lattice. Here we find an explicit dependence of the scale of the inelastic scattering on the quantum density fluctuations.
We consider a one-dimensional bosonic gas on a ring lattice, in the presence of a localized barrier, and under the effect of an artificial gauge field. By means of exact diagonalization we study the persistent currents at varying interactions and bar rier strength, for various values of lattice filling. While generically the persistent currents are strongly suppressed in the Mott insulator phase, they show a resonant behaviour when the barrier strength becomes of the order of the interaction energy. We explain this phenomenon using an effective single-particle model. We show that this effect is robust at finite temperature, up the temperature scale where persistent currents vanish.
We propose to realize the anisotropic triangular-lattice Bose-Hubbard model with positive tunneling matrix elements by using ultracold atoms in an optical lattice dressed by a fast lattice oscillation. This model exhibits frustrated antiferromagnetis m at experimentally feasible temperatures; it interpolates between a classical rotor model for weak interaction, and a quantum spin-1/2 $XY$-model in the limit of hard-core bosons. This allows to explore experimentally gapped spin liquid phases predicted recently [Schmied et al., New J. Phys. {bf 10}, 045017 (2008)].
Based on a one-dimensional double-well superlattice with a unit filling of ultracold atoms per site, we propose a scheme to generate scalable entangled states in the superlattice through resonant lattice shakings. Our scheme utilizes periodic lattice modulations to entangle two atoms in each unit cell with respect to their orbital degree of freedom, and the complete atomic system in the superlattice becomes a cluster of bipartite entangled atom pairs. To demonstrate this we perform $ab initio$ quantum dynamical simulations using the Multi-Layer Multi-Configuration Time-Dependent Hartree Method for Bosons, which accounts for all correlations among the atoms. The proposed clusters of bipartite entanglements manifest as an essential resource for various quantum applications, such as measurement based quantum computation. The lattice shaking scheme to generate this cluster possesses advantages such as a high scalability, fast processing speed, rich controllability on the target entangled states, and accessibility with current experimental techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا