ترغب بنشر مسار تعليمي؟ اضغط هنا

Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice

157   0   0.0 ( 0 )
 نشر من قبل Andre Eckardt
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to realize the anisotropic triangular-lattice Bose-Hubbard model with positive tunneling matrix elements by using ultracold atoms in an optical lattice dressed by a fast lattice oscillation. This model exhibits frustrated antiferromagnetism at experimentally feasible temperatures; it interpolates between a classical rotor model for weak interaction, and a quantum spin-1/2 $XY$-model in the limit of hard-core bosons. This allows to explore experimentally gapped spin liquid phases predicted recently [Schmied et al., New J. Phys. {bf 10}, 045017 (2008)].

قيم البحث

اقرأ أيضاً

81 - Philipp Hauke 2012
Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general , we here analyze a generalization of the spatially anisotropic triangular lattice (SATL) with antiferromagnetic XY interactions, the spatially emph{completely} anisotropic triangular lattice (SCATL). This model can be implemented in experiments with trapped ions, ultra-small Josephson junctions, or ultracold atoms in optical lattices. Using Takahashis modified spin-wave theory, we find indications that indeed two different kinds of order are always separated by phases without magnetic long-range order. Our results further suggest that two gapped, magnetically-disordered phases, identified as distinct in the SATL, are actually continuously connected via the additional anisotropy of the SCATL. As these results indicate, this additional anisotropy -- allowing to approach quantum-disordered phases from different angles -- can give fundamental insight into the nature of quantum disordered phases. We complement our results by exact diagonalizations, which also indicate that in part of the gapped non-magnetic phase, chiral long-range correlations could survive.
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-$T_c$ superconductors.
The recent experimental condensation of ultracold atoms in a triangular optical lattice with negative effective tunneling energies paves the way to study frustrated systems in a controlled environment. Here, we explore the critical behavior of the ch iral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and inter-component interactions, referred to as $V_{0}$ and $V_{12}$, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For $V_{12}/V_{0} = 2$, which corresponds to the bare interaction, this approach suggests a first order phase transition, at which both the U$(1)$ symmetry of condensation and the $mathbb{Z}_2$ symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization group calculation at one-loop order. We demonstrate that the coupling regime $0<V_{12}/V_0leq1$ shares the critical behavior of the Heisenberg fixed point at $V_{12}/V_{0}=1$. For $V_{12}/V_0>1$ we show that $V_{0}$ flows to a negative value, while $V_{12}$ increases and remains positive. This results in a breakdown of the effective quartic field theory due to a cubic anisotropy, and again suggests a discontinuous phase transition.
Understanding the magnetic response of the normal state of the cuprates is considered a key piece in solving the puzzle of their high-temperature superconductivity. The essential physics of these materials is believed to be captured by the Fermi-Hubb ard model, a minimal model that has been realized with cold atoms in optical lattices. Here we report on site-resolved measurements of the Fermi-Hubbard model in a spin-imbalanced atomic gas, allowing us to explore the response of the system to large effective magnetic fields. We observe short-range canted antiferromagnetism at half-filling with stronger spin correlations in the direction orthogonal to the magnetization, in contrast with the spin-balanced case where identical correlations are measured for any projection of the pseudospin. The rotational anisotropy of the spin correlators is found to increase with polarization and with distance between the spins. Away from half-filling, the polarization of the gas exhibits non-monotonic behavior with doping for strong interactions, resembling the behavior of the magnetic susceptibility in the cuprates. We compare our measurements to predictions from Determinantal Quantum Monte Carlo (DQMC) and Numerical Linked Cluster Expansion (NLCE) algorithms and find good agreement. Calculations on the doped system are near the limits of these techniques, illustrating the value of cold atom quantum simulations for studying strongly-correlated materials.
Quantum gas microscopes have expanded the capabilities of quantum simulation of Hubbard models by enabling the study of spatial spin and density correlations in square lattices. However, quantum gas microscopes have not been realized for fermionic at oms in frustrated geometries. Here, we demonstrate the single-atom resolved imaging of ultracold fermionic $^{6}$Li atoms in a triangular optical lattice with a lattice constant of 1003 nm. The optical lattice is formed by a recycled narrow-linewidth, high-power laser combined with a light sheet to allow for Raman sideband cooling on the $D_1$ line. We optically resolve single atoms on individual lattice sites using a high-resolution objective to collect scattered photons while cooling them close to the two-dimensional ground vibrational level in each lattice site. By reconstructing the lattice occupation, we measure an imaging fidelity of ~98%. Our new triangular lattice microscope platform for fermions clears the path for studying spin-spin correlations, entanglement and dynamics of geometrically frustrated Hubbard systems which are expected to exhibit exotic emergent phenomena including spin liquids and kinetic frustration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا