ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating scalable entanglement of ultracold bosons in superlattices through resonant shaking

122   0   0.0 ( 0 )
 نشر من قبل Lushuai Cao Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on a one-dimensional double-well superlattice with a unit filling of ultracold atoms per site, we propose a scheme to generate scalable entangled states in the superlattice through resonant lattice shakings. Our scheme utilizes periodic lattice modulations to entangle two atoms in each unit cell with respect to their orbital degree of freedom, and the complete atomic system in the superlattice becomes a cluster of bipartite entangled atom pairs. To demonstrate this we perform $ab initio$ quantum dynamical simulations using the Multi-Layer Multi-Configuration Time-Dependent Hartree Method for Bosons, which accounts for all correlations among the atoms. The proposed clusters of bipartite entanglements manifest as an essential resource for various quantum applications, such as measurement based quantum computation. The lattice shaking scheme to generate this cluster possesses advantages such as a high scalability, fast processing speed, rich controllability on the target entangled states, and accessibility with current experimental techniques.



قيم البحث

اقرأ أيضاً

The ground state of spin-1 ultracold bosons trapped in a periodic one-dimensional optical superlattice is studied. The two sites of the unit cell have an energy shift between them, whose competition with the spin-dependent strength is the main focus of this paper. Charge density wave (CDW) phases appear for semi-integer and integer densities, leading to rich phase diagrams with Mott insulator, superfluid and CDW phases. The spin-dependent interaction favors insulator phases for integer densities and disfavors CDW phases for semi-integer densities, which tend to disappear. Also, quantum phase transitions at finite values of the spin-dependent strength were observed. For integer densities, Mott insulator-superfluid-CDW insulator transitions appear for an energy shift lower (higher) than the local repulsion for the global density $rho=1$ ($rho=2$).
The concept of valence bond resonance plays a fundamental role in the theory of the chemical bond and is believed to lie at the heart of many-body quantum physical phenomena. Here we show direct experimental evidence of a time-resolved valence bond q uantum resonance with ultracold bosonic atoms in an optical lattice. By means of a superlattice structure we create a three-dimensional array of independent four-site plaquettes, which we can fully control and manipulate in parallel. Moreover, we show how small-scale plaquette resonating valence bond states with s- and d-wave symmetry can be created and characterized. We anticipate our findings to open the path towards the creation and analysis of many-body RVB states in ultracold atomic gases.
We consider a one-dimensional bosonic gas on a ring lattice, in the presence of a localized barrier, and under the effect of an artificial gauge field. By means of exact diagonalization we study the persistent currents at varying interactions and bar rier strength, for various values of lattice filling. While generically the persistent currents are strongly suppressed in the Mott insulator phase, they show a resonant behaviour when the barrier strength becomes of the order of the interaction energy. We explain this phenomenon using an effective single-particle model. We show that this effect is robust at finite temperature, up the temperature scale where persistent currents vanish.
We show that a two-component mixture of a few repulsively interacting ultracold atoms in a one-dimensional trap possesses very different quantum regimes and that the crossover between them can be induced by tuning the interactions in one of the speci es. In the composite fermionization regime, where the interactions between both components are large, none of the species show large occupation of any natural orbital. Our results show that by increasing the interaction in one of the species, one can reach the phase-separated regime. In this regime, the weakly interacting component stays at the center of the trap and becomes almost fully phase coherent, while the strongly interacting component is displaced to the edges of the trap. The crossover is sharp, as observed in the in the energy and the in the largest occupation of a natural orbital of the weakly interacting species. Such a transition is a purely mesoscopic effect which disappears for large atom numbers.
We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi one dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree met hod for bosons, a numerical exact approach to simulate quantum many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground state of the atomic ensemble in the presence of an ion. We analyse the influence of the atom number and the atom-atom interaction on the ground state properties. Interestingly, for weakly interacting atoms, we find that the ion impedes the transition from the ideal gas behaviour to the Thomas-Fermi limit. Furthermore, we show that this effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first building block for systematically investigate many-body physics of such hybrid system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا