ﻻ يوجد ملخص باللغة العربية
We study the influence of quantum density fluctuations in ultracold atoms in an optical lattice on the scattering of matter waves. Such fluctuations are characteristic of the superfluid phase and vanish due to increased interactions in the Mott insulating phase. We employ an analytical treatment of the scattering and demonstrate that the fluctuations lead to incoherent processes, which we propose to observe via decoherence of the fringes in a Mach-Zender interferometer. In this way we extract the purely coherent part of the scattering. Further, we show that the quantum density fluctuations can also be observed directly in the differential angular scattering cross section for an atomic beam scattered from the atoms in a lattice. Here we find an explicit dependence of the scale of the inelastic scattering on the quantum density fluctuations.
We study matter wave scattering from an ultracold, many body atomic system trapped in an optical lattice. We determine the angular cross section that a matter wave probe sees and show that it is strongly affected by the many body phase, superfluid or
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the
The polariton, a quasiparticle formed by strong coupling of a photon to a matter excitation, is a fundamental ingredient of emergent photonic quantum systems ranging from semiconductor nanophotonics to circuit quantum electrodynamics. Exploiting the
Observation of topological phases beyond two-dimension (2D) has been an open challenge for ultracold atoms. Here, we realize for the first time a 3D spin-orbit coupled nodal-line semimetal in an optical lattice and observe the bulk line nodes with ul
Quantum gas microscopes have expanded the capabilities of quantum simulation of Hubbard models by enabling the study of spatial spin and density correlations in square lattices. However, quantum gas microscopes have not been realized for fermionic at