ﻻ يوجد ملخص باللغة العربية
Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain generalization framework of invariant risk minimization (IRM). IRM uses data from multiple domains, learns predictors that do not exploit spurious domain-dependent factors, and generalizes better to unseen domains. We propose an IRM-based ITE estimator aimed at tackling treatment assignment bias when there is little support overlap between the control group and the treatment group. We accomplish this by creating diversity: given a single dataset, we split the data into multiple domains artificially. These diverse domains are then exploited by IRM to more effectively generalize regression-based models to data regions that lack support overlap. We show gains over classical regression approaches to ITE estimation in settings when support mismatch is more pronounced.
The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and find
The defining challenge for causal inference from observational data is the presence of `confounders, covariates that affect both treatment assignment and the outcome. To address this challenge, practitioners collect and adjust for the covariates, hop
Recently, invariant risk minimization (IRM) was proposed as a promising solution to address out-of-distribution (OOD) generalization. However, it is unclear when IRM should be preferred over the widely-employed empirical risk minimization (ERM) frame
Empirical Risk Minimization (ERM) based machine learning algorithms have suffered from weak generalization performance on data obtained from out-of-distribution (OOD). To address this problem, Invariant Risk Minimization (IRM) objective was suggested
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that dat