ﻻ يوجد ملخص باللغة العربية
Empirical Risk Minimization (ERM) based machine learning algorithms have suffered from weak generalization performance on data obtained from out-of-distribution (OOD). To address this problem, Invariant Risk Minimization (IRM) objective was suggested to find invariant optimal predictor which is less affected by the changes in data distribution. However, even with such progress, IRMv1, the practical formulation of IRM, still shows performance degradation when there are not enough training data, and even fails to generalize to OOD, if the number of spurious correlations is larger than the number of environments. In this paper, to address such problems, we propose a novel meta-learning based approach for IRM. In this method, we do not assume the linearity of classifier for the ease of optimization, and solve ideal bi-level IRM objective with Model-Agnostic Meta-Learning (MAML) framework. Our method is more robust to the data with spurious correlations and can provide an invariant optimal classifier even when data from each distribution are scarce. In experiments, we demonstrate that our algorithm not only has better OOD generalization performance than IRMv1 and all IRM variants, but also addresses the weakness of IRMv1 with improved stability.
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that dat
The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and find
We show that the Invariant Risk Minimization (IRM) formulation of Arjovsky et al. (2019) can fail to capture natural invariances, at least when used in its practical linear form, and even on very simple problems which directly follow the motivating e
Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain
This work considers the out-of-distribution (OOD) prediction problem where (1)~the training data are from multiple domains and (2)~the test domain is unseen in the training. DNNs fail in OOD prediction because they are prone to pick up spurious corre