ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical or Invariant Risk Minimization? A Sample Complexity Perspective

124   0   0.0 ( 0 )
 نشر من قبل Kartik Ahuja
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, invariant risk minimization (IRM) was proposed as a promising solution to address out-of-distribution (OOD) generalization. However, it is unclear when IRM should be preferred over the widely-employed empirical risk minimization (ERM) framework. In this work, we analyze both these frameworks from the perspective of sample complexity, thus taking a firm step towards answering this important question. We find that depending on the type of data generation mechanism, the two approaches might have very different finite sample and asymptotic behavior. For example, in the covariate shift setting we see that the two approaches not only arrive at the same asymptotic solution, but also have similar finite sample behavior with no clear winner. For other distribution shifts such as those involving confounders or anti-causal variables, however, the two approaches arrive at different asymptotic solutions where IRM is guaranteed to be close to the desired OOD solutions in the finite sample regime, while ERM is biased even asymptotically. We further investigate how different factors -- the number of environments, complexity of the model, and IRM penalty weight -- impact the sample complexity of IRM in relation to its distance from the OOD solutions


قيم البحث

اقرأ أيضاً

The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and find ing invariant predictors reduces the effect of spurious features by concentrating models on features that have a causal relationship with the outcome. In this work, we pose such invariant risk minimization as finding the Nash equilibrium of an ensemble game among several environments. By doing so, we develop a simple training algorithm that uses best response dynamics and, in our experiments, yields similar or better empirical accuracy with much lower variance than the challenging bi-level optimization problem of Arjovsky et al. (2019). One key theoretical contribution is showing that the set of Nash equilibria for the proposed game are equivalent to the set of invariant predictors for any finite number of environments, even with nonlinear classifiers and transformations. As a result, our method also retains the generalization guarantees to a large set of environments shown in Arjovsky et al. (2019). The proposed algorithm adds to the collection of successful game-theoretic machine learning algorithms such as generative adversarial networks.
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples. Our experiments on the ImageNet-2012, CIFAR-10, CIFAR-100, Google commands and UCI datasets show that mixup improves the generalization of state-of-the-art neural network architectures. We also find that mixup reduces the memorization of corrupt labels, increases the robustness to adversarial examples, and stabilizes the training of generative adversarial networks.
Inferring causal individual treatment effect (ITE) from observational data is a challenging problem whose difficulty is exacerbated by the presence of treatment assignment bias. In this work, we propose a new way to estimate the ITE using the domain generalization framework of invariant risk minimization (IRM). IRM uses data from multiple domains, learns predictors that do not exploit spurious domain-dependent factors, and generalizes better to unseen domains. We propose an IRM-based ITE estimator aimed at tackling treatment assignment bias when there is little support overlap between the control group and the treatment group. We accomplish this by creating diversity: given a single dataset, we split the data into multiple domains artificially. These diverse domains are then exploited by IRM to more effectively generalize regression-based models to data regions that lack support overlap. We show gains over classical regression approaches to ITE estimation in settings when support mismatch is more pronounced.
Ordinal regression is aimed at predicting an ordinal class label. In this paper, we consider its semi-supervised formulation, in which we have unlabeled data along with ordinal-labeled data to train an ordinal regressor. There are several metrics to evaluate the performance of ordinal regression, such as the mean absolute error, mean zero-one error, and mean squared error. However, the existing studies do not take the evaluation metric into account, have a restriction on the model choice, and have no theoretical guarantee. To overcome these problems, we propose a novel generic framework for semi-supervised ordinal regression based on the empirical risk minimization principle that is applicable to optimizing all of the metrics mentioned above. Besides, our framework has flexible choices of models, surrogate losses, and optimization algorithms without the common geometric assumption on unlabeled data such as the cluster assumption or manifold assumption. We further provide an estimation error bound to show that our risk estimator is consistent. Finally, we conduct experiments to show the usefulness of our framework.
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c lassifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the $epsilon$-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا