ﻻ يوجد ملخص باللغة العربية
We investigate one-dimensional charge conserving, spin-singlet (SSS) and spin-triplet (STS) superconductors in the presence of boundary fields. In systems with Open Boundary Conditions (OBC) it has been demonstrated that STS display a four-fold topological degeneracy, protected by the $mathbb{Z}_2$ symmetry which reverses the spins of all fermions, whereas SSS are topologically trivial. In this work we show that it is not only the type of the bulk superconducting instability that determines the eventual topological nature of a phase, but rather the interplay between bulk and boundary properties. In particular we show by means of the Bethe Ansatz technique that SSS may as well be in a $mathbb{Z}_2$-protected topological phase provided suitable twisted open boundary conditions ${widehat{OBC}}$ are imposed. More generally, we find that depending on the boundary fields, a given superconductor, either SSS or STS, may exhibits several types of phases such as topological, mid-gap and trivial phases; each phase being characterized by a boundary fixed point which which we determine. Of particular interest are the mid-gap phases which are stabilized close to the topological fixed point. They include both fractionalized phases where spin-$frac{1}{4}$ bound-states are localized at the two edges of the system and un-fractionalized phases where a spin-$frac{1}{2}$ bound-state is localized at either the left or the right edge.
The helical electron states on the surface of topological insulators or elemental Bismuth become unstable toward superconducting pairing formation when coupled to the charge or magnetic fluctuations. The latter gives rise to pairing instability in ch
Entanglement is known to serve as an order parameter for true topological order in two-dimensional systems. We show how entanglement of disconnected partitions defines topological invariants for one-dimensional topological superconductors. These orde
Charge conserving spin singlet and spin triplet superconductors in one dimension are described by the $U(1)$ symmetric Thirring Hamiltonian. We solve the model with open boundary conditions on the a finite line segment by means of the Bethe Ansatz. W
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc
Based on the analysis of the measurement data of angle-resolved photoemission spectroscopy (ARPES) and optics, we show that the charge transfer gap is significantly smaller than the optical one and is reduced by doping in electron doped cuprate super