ﻻ يوجد ملخص باللغة العربية
Entanglement is known to serve as an order parameter for true topological order in two-dimensional systems. We show how entanglement of disconnected partitions defines topological invariants for one-dimensional topological superconductors. These order parameters quantitatively capture the entanglement that is possible to distill from the ground state manifold, and are thus quantized to 0 or log 2. Their robust quantization property is inferred from the underlying lattice gauge theory description of topological superconductors, and is corroborated via exact solutions and numerical simulations. Transitions between topologically trivial and non-trivial phases are accompanied by scaling behavior, a hallmark of genuine order parameters, captured by entanglement critical exponents. These order parameters are experimentally measurable utilizing state-of-the-art techniques.
We investigate one-dimensional charge conserving, spin-singlet (SSS) and spin-triplet (STS) superconductors in the presence of boundary fields. In systems with Open Boundary Conditions (OBC) it has been demonstrated that STS display a four-fold topol
A well-established way to find novel Majorana particles in a solid-state system is to have superconductivity arising from the topological electronic structure. To this end, the heterostructure systems that consist of normal superconductor and topolog
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-co
Topological superconductors (TSCs) are correlated quantum states with simultaneous off-diagonal long-range order and nontrivial topological invariants. They produce gapless or zero energy boundary excitations, including Majorana zero modes and chiral
Chains of magnetic atoms, placed on the surface of s-wave superconductors, have been established as a laboratory for the study of Majorana bound states. In such systems, the breaking of time reversal due to magnetic moments gives rise to the formatio