ﻻ يوجد ملخص باللغة العربية
Based on the analysis of the measurement data of angle-resolved photoemission spectroscopy (ARPES) and optics, we show that the charge transfer gap is significantly smaller than the optical one and is reduced by doping in electron doped cuprate superconductors. This leads to a strong charge fluctuation between the Zhang-Rice singlet and the upper Hubbard bands. The basic model for describing this system is a hybridized two-band $t$-$J$ model. In the symmetric limit where the corresponding intra- and inter-band hopping integrals are equal to each other, this two-band model is equivalent to the Hubbard model with an antiferromagnetic exchange interaction (i.e. the $t$-$U$-$J$ model). The mean-field result of the $t$-$U$-$J$ model gives a good account for the doping evolution of the Fermi surface and the staggered magnetization.
The unconventional normal-state properties of the cuprates are often discussed in terms of emergent electronic order that onsets below a putative critical doping of xc = 0.19. Charge-density wave (CDW) correlations represent one such order; however,
Starting from a spin-fermion model for the cuprate superconductors, we obtain an effective interaction for the charge carriers by integrating out the spin degrees of freedom. Our model predicts a quantum critical point for the superconducting interac
In this paper, we review the low energy electronic structure of the kinetic energy driven d-wave cuprate superconductors. We give a general description of the charge-spin separation fermion-spin theory, where the constrained electron is decoupled as
In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially
The presence of different electronic orders other than superconductivity populating the phase diagram of cuprates suggests that they might be the key to disclose the mysteries of this class of materials. In particular charge order in the form of char