ﻻ يوجد ملخص باللغة العربية
We investigate the behaviour of a system where a single phase fluid domain is coupled to a biphasic poroelastic domain. The fluid domain consists of an incompressible Newtonian viscous fluid while the poroelastic domain consists of a linear elastic solid filled with the same viscous fluid. The properties of the poroelastic domain, i.e. permeability and elastic parameters, depend on the inhomogeneous initial porosity field. The theoretical framework highlights how the heterogeneous material properties enter the linearised governing equations for the poroelastic domain. To couple flows through this domain with a surrounding Stokes flow, we show case a numerical implementation based on a new mixed formulation where the equations in the poroelastic domain are rewritten in terms of three fields: displacement, fluid pressure and total pressure. Coupling single phase and multiphase flow problems are ubiquitous in many industrial and biological applications, and here we consider an example from in-vitro tissue engineering. We consider a perfusion system, where a flow is forced to pass from the single phase fluid to the biphasic poroelastic domain. We focus on a simplified two dimensional geometry with small aspect ratio, and perform an asymptotic analysis to derive analytical solutions for the displacement, the pressure and the velocity fields. Our analysis advances the quantitative understanding of the role of heterogeneous material properties of a poroelastic domain on its mechanics when coupled with a fluid domain. Specifically, (i) the analytical analysis gives closed form relations that can be directly used in the design of slender perfusion systems; (ii) the numerical method is validated by comparing its result against selected theoretical solutions, opening towards the possibility to investigate more complex geometrical configurations.
Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described by the incompressible Navier-Stokes equations (INSE). A hallmark of turbulence is spontaneous generation of intense whirls, resulting from amplification o
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically
We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it fe
We present an iterative coupling scheme for the numerical approximation of the mixed hyperbolic-parabolic system of fully dynamic poroelasticity. We prove its convergence in the Banach space setting for an abstract semi-discretization in time that al
The regularisation of nonlinear hyperbolic conservation laws has been a problem of great importance for achieving uniqueness of weak solutions and also for accurate numerical simulations. In a recent work, the first two authors proposed a so-called H