ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterative Coupling for Fully Dynamic Poroelasticity

382   0   0.0 ( 0 )
 نشر من قبل Markus Bause
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an iterative coupling scheme for the numerical approximation of the mixed hyperbolic-parabolic system of fully dynamic poroelasticity. We prove its convergence in the Banach space setting for an abstract semi-discretization in time that allows the application of the family of diagonally implicit Runge-Kutta methods. Recasting the semi-discrete solution as the minimizer of a properly defined energy functional, the proof of convergence uses its alternating minimization. The scheme is closely related to the undrained split for the quasi-static Biot system.



قيم البحث

اقرأ أيضاً

In this paper we study the linear systems arising from discretized poroelasticity problems. We formulate one block preconditioner for the two-filed Biot model and several preconditioners for the classical three-filed Biot model under the unified rela tionship framework between well-posedness and preconditioners. By the unified theory, we show all the considered preconditioners are uniformly optimal with respect to material and discretization parameters. Numerical tests demonstrate the robustness of these preconditioners.
136 - M. Bause , F. A. Radu , U. Kocher 2016
In this work we analyze an optimized artificial fixed-stress iteration scheme for the numerical approximation of the Biot system modelling fluid flow in deformable porous media. The iteration is based on a prescribed constant artificial volumetric me an total stress in the first half step. The optimization comes through the adaptation of a numerical stabilization or tuning parameter and aims at an acceleration of the iterations. The separated subproblems of fluid flow, written as a mixed first order in space system, and mechanical deformation are discretized by space-time finite element methods of arbitrary order. Continuous and discontinuous discretizations of the time variable are encountered. The convergence of the iteration schemes is proved for the continuous and fully discrete case. The choice of the optimization parameter is identified in the proofs of convergence of the iterations. The analyses are illustrated and confirmed by numerical experiments.
This work is concerned with the iterative solution of systems of quasi-static multiple-network poroelasticity (MPET) equations describing flow in elastic porous media that is permeated by single or multiple fluid networks. Here, the focus is on a thr ee-field formulation of the problem in which the displacement field of the elastic matrix and, additionally, one velocity field and one pressure field for each of the $n ge 1$ fluid networks are the unknown physical quantities. Generalizing Biots model of consolidation, which is obtained for $n=1$, the MPET equations for $nge1$ exhibit a double saddle point structure. The proposed approach is based on a framework of augmenting and splitting this three-by-three block system in such a way that the resulting block Gauss-Seidel preconditioner defines a fully decoupled iterative scheme for the flux-, pressure-, and displacement fields. In this manner, one obtains an augmented Lagrangian Uzawa-type method, the analysis of which is the main contribution of this work. The parameter-robust uniform linear convergence of this fixed-point iteration is proved by showing that its rate of contraction is strictly less than one independent of all physical and discretization parameters. The theoretical results are confirmed by a series of numerical tests that compare the new fully decoupled scheme to the very popular partially decoupled fixed-stress split iterative method, which decouples only flow--the flux and pressure fields remain coupled in this case--from the mechanics problem. We further test the performance of the block triangular preconditioner defining the new scheme when used to accelerate the GMRES algorithm.
121 - Xia Wang , Eric Chung , Shubin Fu 2020
Accurate numerical simulations of interaction between fluid and solid play an important role in applications. The task is challenging in practical scenarios as the media are usually highly heterogeneous with very large contrast. To overcome this comp utational challenge, various multiscale methods are developed. In this paper, we consider a class of linear poroelasticity problems in high contrast heterogeneous porous media, and develop a mixed generalized multiscale finite element method (GMsFEM) to obtain a fast computational method. Our aim is to develop a multiscale method that is robust with respect to the heterogeneities and contrast of the media, and gives a mass conservative fluid velocity field. We will construct decoupled multiscale basis functions for the elastic displacement as well as fluid velocity. Our multiscale basis functions are local. The construction is based on some suitable choices of local snapshot spaces and local spectral decomposition, with the goal of extracting dominant modes of the solutions. For the pressure, we will use piecewise constant approximation. We will present several numerical examples to illustrate the performance of our method. Our results indicate that the proposed method is able to give accurate numerical solutions with a small degree of freedoms.
We investigate the behaviour of a system where a single phase fluid domain is coupled to a biphasic poroelastic domain. The fluid domain consists of an incompressible Newtonian viscous fluid while the poroelastic domain consists of a linear elastic s olid filled with the same viscous fluid. The properties of the poroelastic domain, i.e. permeability and elastic parameters, depend on the inhomogeneous initial porosity field. The theoretical framework highlights how the heterogeneous material properties enter the linearised governing equations for the poroelastic domain. To couple flows through this domain with a surrounding Stokes flow, we show case a numerical implementation based on a new mixed formulation where the equations in the poroelastic domain are rewritten in terms of three fields: displacement, fluid pressure and total pressure. Coupling single phase and multiphase flow problems are ubiquitous in many industrial and biological applications, and here we consider an example from in-vitro tissue engineering. We consider a perfusion system, where a flow is forced to pass from the single phase fluid to the biphasic poroelastic domain. We focus on a simplified two dimensional geometry with small aspect ratio, and perform an asymptotic analysis to derive analytical solutions for the displacement, the pressure and the velocity fields. Our analysis advances the quantitative understanding of the role of heterogeneous material properties of a poroelastic domain on its mechanics when coupled with a fluid domain. Specifically, (i) the analytical analysis gives closed form relations that can be directly used in the design of slender perfusion systems; (ii) the numerical method is validated by comparing its result against selected theoretical solutions, opening towards the possibility to investigate more complex geometrical configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا