ﻻ يوجد ملخص باللغة العربية
Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described by the incompressible Navier-Stokes equations (INSE). A hallmark of turbulence is spontaneous generation of intense whirls, resulting from amplification of the fluid rotation-rate (vorticity) by its deformation-rate (strain). This interaction, encoded in the non-linearity of INSE, is non-local, i.e., depends on the entire state of the flow, constituting a serious hindrance in turbulence theory and in establishing regularity of INSE. Here, we unveil a novel aspect of this interaction, by separating strain into local and non-local contributions utilizing the Biot-Savart integral of vorticity in a sphere of radius R. Analyzing highly-resolved numerical turbulent solutions to INSE, we find that when vorticity becomes very large, the local strain over small R surprisingly counteracts further amplification. This uncovered self-attenuation mechanism is further shown to be connected to local Beltramization of the flow, and could provide a direction in establishing the regularity of INSE.
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically
We accomplish two major tasks. First, we show that the turbulent motion at large scales obeys Gaussian statistics in the interval 0 < Rlambda < 8.8, where Rlambda is the microscale Reynolds number, and that the Gaussian flow breaks down to yield plac
Whether the 3D incompressible Navier-Stokes equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D incompre
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a co
We investigate the behaviour of a system where a single phase fluid domain is coupled to a biphasic poroelastic domain. The fluid domain consists of an incompressible Newtonian viscous fluid while the poroelastic domain consists of a linear elastic s