ﻻ يوجد ملخص باللغة العربية
We investigate the spatio-temporal structure of the most likely configurations realising extremely high vorticity or strain in the stochastically forced 3D incompressible Navier-Stokes equations. Most likely configurations are computed by numerically finding the highest probability velocity field realising an extreme constraint as solution of a large optimisation problem. High-vorticity configurations are identified as pinched vortex filaments with swirl, while high-strain configurations correspond to counter-rotating vortex rings. We additionally observe that the most likely configurations for vorticity and strain spontaneously break their rotational symmetry for extremely high observable values. Instanton calculus and large deviation theory allow us to show that these maximum likelihood realisations determine the tail probabilities of the observed quantities. In particular, we are able to demonstrate that artificially enforcing rotational symmetry for large strain configurations leads to a severe underestimate of their probability, as it is dominated in likelihood by an exponentially more likely symmetry broken vortex-sheet configuration.
Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described by the incompressible Navier-Stokes equations (INSE). A hallmark of turbulence is spontaneous generation of intense whirls, resulting from amplification o
Whether the 3D incompressible Navier-Stokes equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D incompre
This paper presents a low-communication-overhead parallel method for solving the 3D incompressible Navier-Stokes equations. A fully-explicit projection method with second-order space-time accuracy is adopted. Combined with fast Fourier transforms, th
In this paper, we present strong numerical evidences that the $3$D incompressible axisymmetric Navier-Stokes equations with degenerate diffusion coefficients and smooth initial data of finite energy develop a potential finite time locally self-simila
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a co