ترغب بنشر مسار تعليمي؟ اضغط هنا

A microservice-based framework for exploring data selection in cross-building knowledge transfer

305   0   0.0 ( 0 )
 نشر من قبل Mouna Labiadh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Mouna Labiadh




اسأل ChatGPT حول البحث

Supervised deep learning has achieved remarkable success in various applications. Successful machine learning application however depends on the availability of sufficiently large amount of data. In the absence of data from the target domain, representative data collection from multiple sources is often needed. However, a model trained on existing multi-source data might generalize poorly on the unseen target domain. This problem is referred to as domain shift. In this paper, we explore the suitability of multi-source training data selection to tackle the domain shift challenge in the context of domain generalization. We also propose a microservice-oriented methodology for supporting this solution. We perform our experimental study on the use case of building energy consumption prediction. Experimental results suggest that minimal building description is capable of improving cross-building generalization performances when used to select energy consumption data.



قيم البحث

اقرأ أيضاً

We introduce a framework for AI-based medical consultation system with knowledge graph embedding and reinforcement learning components and its implement. Our implement of this framework leverages knowledge organized as a graph to have diagnosis accor ding to evidence collected from patients recurrently and dynamically. According to experiment we designed for evaluating its performance, it archives a good result. More importantly, for getting better performance, researchers can implement it on this framework based on their innovative ideas, well designed experiments and even clinical trials.
Correctly detecting the semantic type of data columns is crucial for data science tasks such as automated data cleaning, schema matching, and data discovery. Existing data preparation and analysis systems rely on dictionary lookups and regular expres sion matching to detect semantic types. However, these matching-based approaches often are not robust to dirty data and only detect a limited number of types. We introduce Sherlock, a multi-input deep neural network for detecting semantic types. We train Sherlock on $686,765$ data columns retrieved from the VizNet corpus by matching $78$ semantic types from DBpedia to column headers. We characterize each matched column with $1,588$ features describing the statistical properties, character distributions, word embeddings, and paragraph vectors of column values. Sherlock achieves a support-weighted F$_1$ score of $0.89$, exceeding that of machine learning baselines, dictionary and regular expression benchmarks, and the consensus of crowdsourced annotations.
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passa ge comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.
The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the worlds largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.
95 - Yang Chen , Alan Ritter 2020
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned models own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا