ﻻ يوجد ملخص باللغة العربية
Commonly, Deep Neural Networks (DNNs) generalize well on samples drawn from a distribution similar to that of the training set. However, DNNs predictions are brittle and unreliable when the test samples are drawn from a dissimilar distribution. This presents a major concern for deployment in real-world applications, where such behavior may come at a great cost -- as in the case of autonomous vehicles or healthcare applications. This paper frames the Out Of Distribution (OOD) detection problem in DNN as a statistical hypothesis testing problem. Unlike previous OOD detection heuristics, our framework is guaranteed to maintain the false positive rate (detecting OOD as in-distribution) for test data. We build on this framework to suggest a novel OOD procedure based on low-order statistics. Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters -- and at a fraction of the computational cost.
The need to avoid confident predictions on unfamiliar data has sparked interest in out-of-distribution (OOD) detection. It is widely assumed that Bayesian neural networks (BNN) are well suited for this task, as the endowed epistemic uncertainty shoul
To increase the trustworthiness of deep neural network (DNN) classifiers, an accurate prediction confidence that represents the true likelihood of correctness is crucial. Towards this end, many post-hoc calibration methods have been proposed to lever
Fully quantized training (FQT), which uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model, is a promising approach to accelerate the training of deep neural networks. One major challenge with FQT
Recently, it has been shown that deep neural networks (DNN) are subject to attacks through adversarial samples. Adversarial samples are often crafted through adversarial perturbation, i.e., manipulating the original sample with minor modifications so
Perhaps surprisingly, recent studies have shown probabilistic model likelihoods have poor specificity for out-of-distribution (OOD) detection and often assign higher likelihoods to OOD data than in-distribution data. To ameliorate this issue we propo