ترغب بنشر مسار تعليمي؟ اضغط هنا

A Statistical Framework for Low-bitwidth Training of Deep Neural Networks

103   0   0.0 ( 0 )
 نشر من قبل Jianfei Chen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Fully quantized training (FQT), which uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model, is a promising approach to accelerate the training of deep neural networks. One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties. In this paper, we address this problem by presenting a statistical framework for analyzing FQT algorithms. We view the quantized gradient of FQT as a stochastic estimator of its full precision counterpart, a procedure known as quantization-aware training (QAT). We show that the FQT gradient is an unbiased estimator of the QAT gradient, and we discuss the impact of gradient quantization on its variance. Inspired by these theoretical results, we develop two novel gradient quantizers, and we show that these have smaller variance than the existing per-tensor quantizer. For training ResNet-50 on ImageNet, our 5-bit block Householder quantizer achieves only 0.5% validation accuracy loss relative to QAT, comparable to the existing INT8 baseline.



قيم البحث

اقرأ أيضاً

Deep neural networks have yielded superior performance in many applications; however, the gradient computation in a deep model with millions of instances lead to a lengthy training process even with modern GPU/TPU hardware acceleration. In this paper , we propose AutoAssist, a simple framework to accelerate training of a deep neural network. Typically, as the training procedure evolves, the amount of improvement in the current model by a stochastic gradient update on each instance varies dynamically. In AutoAssist, we utilize this fact and design a simple instance shrinking operation, which is used to filter out instances with relatively low marginal improvement to the current model; thus the computationally intensive gradient computations are performed on informative instances as much as possible. We prove that the proposed technique outperforms vanilla SGD with existing importance sampling approaches for linear SVM problems, and establish an O(1/k) convergence for strongly convex problems. In order to apply the proposed techniques to accelerate training of deep models, we propose to jointly train a very lightweight Assistant network in addition to the original deep network referred to as Boss. The Assistant network is designed to gauge the importance of a given instance with respect to the current Boss such that a shrinking operation can be applied in the batch generator. With careful design, we train the Boss and Assistant in a nonblocking and asynchronous fashion such that overhead is minimal. We demonstrate that AutoAssist reduces the number of epochs by 40% for training a ResNet to reach the same test accuracy on an image classification data set and saves 30% training time needed for a transformer model to yield the same BLEU scores on a translation dataset.
Deep neural networks (DNNs) have achieved great success in image classification, but they may be very vulnerable to adversarial attacks with small perturbations to images. Moreover, the adversarial training based on adversarial image samples has been shown to improve the robustness and generalization of DNNs. The aim of this paper is to develop a novel framework based on information-geometry sensitivity analysis and the particle swarm optimization to improve two aspects of adversarial image generation and training for DNNs. The first one is customized generation of adversarial examples. It can design adversarial attacks from options of the number of perturbed pixels, the misclassification probability, and the targeted incorrect class, and hence it is more flexible and effective to locate vulnerable pixels and also enjoys certain adversarial universality. The other is targeted adversarial training. DNN models can be improved in training with the adversarial information using a manifold-based influence measure effective in vulnerable image/pixel detection as well as allowing for targeted attacks, thereby exhibiting an enhanced adversarial defense in testing.
139 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks. As a result, there is a surge of interest in using these models for making potentially important decisions in high-regret applications. However, despi te GNNs impressive performance, it has been observed that carefully crafted perturbations on graph structures (or nodes attributes) lead them to make wrong predictions. Presence of these adversarial examples raises serious security concerns. Most of the existing robust GNN design/training methods are only applicable to white-box settings where model parameters are known and gradient based methods can be used by performing convex relaxation of the discrete graph domain. More importantly, these methods are not efficient and scalable which make them infeasible in time sensitive tasks and massive graph datasets. To overcome these limitations, we propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs in a generic and an efficient manner. On several applications, we show that the proposed techniques are significantly less computationally expensive and, in some cases, more robust than the state-of-the-art methods making them suitable to large-scale problems which were out of the reach of traditional robust training methods.
Learning Rate (LR) is an important hyper-parameter to tune for effective training of deep neural networks (DNNs). Even for the baseline of a constant learning rate, it is non-trivial to choose a good constant value for training a DNN. Dynamic learnin g rates involve multi-step tuning of LR values at various stages of the training process and offer high accuracy and fast convergence. However, they are much harder to tune. In this paper, we present a comprehensive study of 13 learning rate functions and their associated LR policies by examining their range parameters, step parameters, and value update parameters. We propose a set of metrics for evaluating and selecting LR policies, including the classification confidence, variance, cost, and robustness, and implement them in LRBench, an LR benchmarking system. LRBench can assist end-users and DNN developers to select good LR policies and avoid bad LR policies for training their DNNs. We tested LRBench on Caffe, an open source deep learning framework, to showcase the tuning optimization of LR policies. Evaluated through extensive experiments, we attempt to demystify the tuning of LR policies by identifying good LR policies with effective LR value ranges and step sizes for LR update schedules.
Commonly, Deep Neural Networks (DNNs) generalize well on samples drawn from a distribution similar to that of the training set. However, DNNs predictions are brittle and unreliable when the test samples are drawn from a dissimilar distribution. This presents a major concern for deployment in real-world applications, where such behavior may come at a great cost -- as in the case of autonomous vehicles or healthcare applications. This paper frames the Out Of Distribution (OOD) detection problem in DNN as a statistical hypothesis testing problem. Unlike previous OOD detection heuristics, our framework is guaranteed to maintain the false positive rate (detecting OOD as in-distribution) for test data. We build on this framework to suggest a novel OOD procedure based on low-order statistics. Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters -- and at a fraction of the computational cost.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا