ترغب بنشر مسار تعليمي؟ اضغط هنا

Are Bayesian neural networks intrinsically good at out-of-distribution detection?

78   0   0.0 ( 0 )
 نشر من قبل Christian Henning
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The need to avoid confident predictions on unfamiliar data has sparked interest in out-of-distribution (OOD) detection. It is widely assumed that Bayesian neural networks (BNN) are well suited for this task, as the endowed epistemic uncertainty should lead to disagreement in predictions on outliers. In this paper, we question this assumption and provide empirical evidence that proper Bayesian inference with common neural network architectures does not necessarily lead to good OOD detection. To circumvent the use of approximate inference, we start by studying the infinite-width case, where Bayesian inference can be exact considering the corresponding Gaussian process. Strikingly, the kernels induced under common architectural choices lead to uncertainties that do not reflect the underlying data generating process and are therefore unsuited for OOD detection. Finally, we study finite-width networks using HMC, and observe OOD behavior that is consistent with the infinite-width case. Overall, our study discloses fundamental problems when naively using BNNs for OOD detection and opens interesting avenues for future research.

قيم البحث

اقرأ أيضاً

Commonly, Deep Neural Networks (DNNs) generalize well on samples drawn from a distribution similar to that of the training set. However, DNNs predictions are brittle and unreliable when the test samples are drawn from a dissimilar distribution. This presents a major concern for deployment in real-world applications, where such behavior may come at a great cost -- as in the case of autonomous vehicles or healthcare applications. This paper frames the Out Of Distribution (OOD) detection problem in DNN as a statistical hypothesis testing problem. Unlike previous OOD detection heuristics, our framework is guaranteed to maintain the false positive rate (detecting OOD as in-distribution) for test data. We build on this framework to suggest a novel OOD procedure based on low-order statistics. Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters -- and at a fraction of the computational cost.
Variational Bayesian neural networks (BNNs) perform variational inference over weights, but it is difficult to specify meaningful priors and approximate posteriors in a high-dimensional weight space. We introduce functional variational Bayesian neura l networks (fBNNs), which maximize an Evidence Lower BOund (ELBO) defined directly on stochastic processes, i.e. distributions over functions. We prove that the KL divergence between stochastic processes equals the supremum of marginal KL divergences over all finite sets of inputs. Based on this, we introduce a practical training objective which approximates the functional ELBO using finite measurement sets and the spectral Stein gradient estimator. With fBNNs, we can specify priors entailing rich structures, including Gaussian processes and implicit stochastic processes. Empirically, we find fBNNs extrapolate well using various structured priors, provide reliable uncertainty estimates, and scale to large datasets.
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space. We formulate a prior that incorporates functional constraints about what the output can or cannot be in regions of the input space. Output-Constrained BNNs (OC-BNN) represent an interpretable approach of enforcing a range of constraints, fully consistent with the Bayesian framework and amenable to black-box inference. We demonstrate how OC-BNNs improve model robustness and prevent the prediction of infeasible outputs in two real-world applications of healthcare and robotics.
Perhaps surprisingly, recent studies have shown probabilistic model likelihoods have poor specificity for out-of-distribution (OOD) detection and often assign higher likelihoods to OOD data than in-distribution data. To ameliorate this issue we propo se DoSE, the density of states estimator. Drawing on the statistical physics notion of ``density of states, the DoSE decision rule avoids direct comparison of model probabilities, and instead utilizes the ``probability of the model probability, or indeed the frequency of any reasonable statistic. The frequency is calculated using nonparametric density estimators (e.g., KDE and one-class SVM) which measure the typicality of various model statistics given the training data and from which we can flag test points with low typicality as anomalous. Unlike many other methods, DoSE requires neither labeled data nor OOD examples. DoSE is modular and can be trivially applied to any existing, trained model. We demonstrate DoSEs state-of-the-art performance against other unsupervised OOD detectors on previously established ``hard benchmarks.
We study probabilistic safety for Bayesian Neural Networks (BNNs) under adversarial input perturbations. Given a compact set of input points, $T subseteq mathbb{R}^m$, we study the probability w.r.t. the BNN posterior that all the points in $T$ are m apped to the same region $S$ in the output space. In particular, this can be used to evaluate the probability that a network sampled from the BNN is vulnerable to adversarial attacks. We rely on relaxation techniques from non-convex optimization to develop a method for computing a lower bound on probabilistic safety for BNNs, deriving explicit procedures for the case of interval and linear function propagation techniques. We apply our methods to BNNs trained on a regression task, airborne collision avoidance, and MNIST, empirically showing that our approach allows one to certify probabilistic safety of BNNs with millions of parameters.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا