ﻻ يوجد ملخص باللغة العربية
Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected attributes. We introduce and analyze a new, decoupled metric for measuring bias amplification, $text{BiasAmp}_{rightarrow}$ (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass. Code is located at https://github.com/princetonvisualai/directional-bias-amp
Recommender systems usually amplify the biases in the data. The model learned from historical interactions with imbalanced item distribution will amplify the imbalance by over-recommending items from the major groups. Addressing this issue is essenti
The popularity and widespread use of pruning and quantization is driven by the severe resource constraints of deploying deep neural networks to environments with strict latency, memory and energy requirements. These techniques achieve high levels of
Dropout is a simple but effective technique for learning in neural networks and other settings. A sound theoretical understanding of dropout is needed to determine when dropout should be applied and how to use it most effectively. In this paper we co
Algorithmic approaches endow deep learning systems with implicit bias that helps them generalize even in over-parametrized settings. In this paper, we focus on understanding such a bias induced in learning through dropout, a popular technique to avoi
Building reliable machine learning systems requires that we correctly understand their level of confidence. Calibration measures the degree of accuracy in a models confidence and most research in calibration focuses on techniques to improve an empiri