ﻻ يوجد ملخص باللغة العربية
Algorithmic approaches endow deep learning systems with implicit bias that helps them generalize even in over-parametrized settings. In this paper, we focus on understanding such a bias induced in learning through dropout, a popular technique to avoid overfitting in deep learning. For single hidden-layer linear neural networks, we show that dropout tends to make the norm of incoming/outgoing weight vectors of all the hidden nodes equal. In addition, we provide a complete characterization of the optimization landscape induced by dropout.
Dropout is a simple but effective technique for learning in neural networks and other settings. A sound theoretical understanding of dropout is needed to determine when dropout should be applied and how to use it most effectively. In this paper we co
We give a formal and complete characterization of the explicit regularizer induced by dropout in deep linear networks with squared loss. We show that (a) the explicit regularizer is composed of an $ell_2$-path regularizer and other terms that are als
Convolutional Neural Networks (CNNs) are known to rely more on local texture rather than global shape when making decisions. Recent work also indicates a close relationship between CNNs texture-bias and its robustness against distribution shift, adve
Using privileged information during training can improve the sample efficiency and performance of machine learning systems. This paradigm has been applied to reinforcement learning (RL), primarily in the form of distillation or auxiliary tasks, and l
Reinforcement learning (RL) agents optimize only the features specified in a reward function and are indifferent to anything left out inadvertently. This means that we must not only specify what to do, but also the much larger space of what not to do