ﻻ يوجد ملخص باللغة العربية
Dropout is a simple but effective technique for learning in neural networks and other settings. A sound theoretical understanding of dropout is needed to determine when dropout should be applied and how to use it most effectively. In this paper we continue the exploration of dropout as a regularizer pioneered by Wager, et.al. We focus on linear classification where a convex proxy to the misclassification loss (i.e. the logistic loss used in logistic regression) is minimized. We show: (a) when the dropout-regularized criterion has a unique minimizer, (b) when the dropout-regularization penalty goes to infinity with the weights, and when it remains bounded, (c) that the dropout regularization can be non-monotonic as individual weights increase from 0, and (d) that the dropout regularization penalty may not be convex. This last point is particularly surprising because the combination of dropout regularization with any convex loss proxy is always a convex function. In order to contrast dropout regularization with $L_2$ regularization, we formalize the notion of when different sources are more compatible with different regularizers. We then exhibit distributions that are provably more compatible with dropout regularization than $L_2$ regularization, and vice versa. These sources provide additional insight into how the inductive biases of dropout and $L_2$ regularization differ. We provide some similar results for $L_1$ regularization.
Algorithmic approaches endow deep learning systems with implicit bias that helps them generalize even in over-parametrized settings. In this paper, we focus on understanding such a bias induced in learning through dropout, a popular technique to avoi
While designing inductive bias in neural architectures has been widely studied, we hypothesize that transformer networks are flexible enough to learn inductive bias from suitable generic tasks. Here, we replace architecture engineering by encoding in
Adversarial training is a principled approach for training robust neural networks. Despite of tremendous successes in practice, its theoretical properties still remain largely unexplored. In this paper, we provide new theoretical insights of gradient
Borrowing from the transformer models that revolutionized the field of natural language processing, self-supervised feature learning for visual tasks has also seen state-of-the-art success using these extremely deep, isotropic networks. However, the
We give a formal and complete characterization of the explicit regularizer induced by dropout in deep linear networks with squared loss. We show that (a) the explicit regularizer is composed of an $ell_2$-path regularizer and other terms that are als