ﻻ يوجد ملخص باللغة العربية
Recently, Vision Transformers (ViTs) have achieved impressive results on various vision tasks. Yet, their generalization ability under different distribution shifts is rarely understood. In this work, we provide a comprehensive study on the out-of-distribution generalization of ViTs. To support a systematic investigation, we first present a taxonomy of distribution shifts by categorizing them into five conceptual groups: corruption shift, background shift, texture shift, destruction shift, and style shift. Then we perform extensive evaluations of ViT variants under different groups of distribution shifts and compare their generalization ability with CNNs. Several important observations are obtained: 1) ViTs generalize better than CNNs under multiple distribution shifts. With the same or fewer parameters, ViTs are ahead of corresponding CNNs by more than 5% in top-1 accuracy under most distribution shifts. 2) Larger ViTs gradually narrow the in-distribution and out-of-distribution performance gap. To further improve the generalization of ViTs, we design the Generalization-Enhanced ViTs by integrating adversarial learning, information theory, and self-supervised learning. By investigating three types of generalization-enhanced ViTs, we observe their gradient-sensitivity and design a smoother learning strategy to achieve a stable training process. With modified training schemes, we achieve improvements on performance towards out-of-distribution data by 4% from vanilla ViTs. We comprehensively compare three generalization-enhanced ViTs with their corresponding CNNs, and observe that: 1) For the enhanced model, larger ViTs still benefit more for the out-of-distribution generalization. 2) generalization-enhanced ViTs are more sensitive to the hyper-parameters than corresponding CNNs. We hope our comprehensive study could shed light on the design of more generalizable learning architectures.
Traditional normalization techniques (e.g., Batch Normalization and Instance Normalization) generally and simplistically assume that training and test data follow the same distribution. As distribution shifts are inevitable in real-world applications
Real-world data often exhibit imbalanced distributions, where certain target values have significantly fewer observations. Existing techniques for dealing with imbalanced data focus on targets with categorical indices, i.e., different classes. Howeve
Hepatocellular carcinoma (HCC) is the second most frequent cause of malignancy-related death and is one of the diseases with the highest incidence in the world. Because the liver is the only organ in the human body that is supplied by two major vesse
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting
Attention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a models s