ﻻ يوجد ملخص باللغة العربية
In physical design, human designers typically place macros via trial and error, which is a Markov decision process. Reinforcement learning (RL) methods have demonstrated superhuman performance on the macro placement. In this paper, we propose an extension to this prior work (Mirhoseini et al., 2020). We first describe the details of the policy and value network architecture. We replace the force-directed method with DREAMPlace for placing standard cells in the RL environment. We also compare our improved method with other academic placers on public benchmarks.
In this work, we present a learning-based approach to chip placement, one of the most complex and time-consuming stages of the chip design process. Unlike prior methods, our approach has the ability to learn from past experience and improve over time
Real-world data often exhibit imbalanced distributions, where certain target values have significantly fewer observations. Existing techniques for dealing with imbalanced data focus on targets with categorical indices, i.e., different classes. Howeve
For deep neural network accelerators, memory movement is both energetically expensive and can bound computation. Therefore, optimal mapping of tensors to memory hierarchies is critical to performance. The growing complexity of neural networks calls f
Placement Optimization is an important problem in systems and chip design, which consists of mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to constraints. In this paper, we start by motivating rein
Value factorisation proves to be a very useful technique in multi-agent reinforcement learning (MARL), but the underlying mechanism is not yet fully understood. This paper explores a theoretic basis for value factorisation. We generalise the Shapley