ﻻ يوجد ملخص باللغة العربية
We revisit the problem of $n$-gram extraction in the differential privacy setting. In this problem, given a corpus of private text data, the goal is to release as many $n$-grams as possible while preserving user level privacy. Extracting $n$-grams is a fundamental subroutine in many NLP applications such as sentence completion, response generation for emails etc. The problem also arises in other applications such as sequence mining, and is a generalization of recently studied differentially private set union (DPSU). In this paper, we develop a new differentially private algorithm for this problem which, in our experiments, significantly outperforms the state-of-the-art. Our improvements stem from combining recent advances in DPSU, privacy accounting, and new heuristics for pruning in the tree-based approach initiated by Chen et al. (2012).
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that
In this work we consider the problem of online submodular maximization under a cardinality constraint with differential privacy (DP). A stream of $T$ submodular functions over a common finite ground set $U$ arrives online, and at each time-step the d
We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy. Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas
Economics and social science research often require analyzing datasets of sensitive personal information at fine granularity, with models fit to small subsets of the data. Unfortunately, such fine-grained analysis can easily reveal sensitive individu