ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstructing the Extreme Ultraviolet Emission of Cool Dwarfs Using Differential Emission Measure Polynomials

79   0   0.0 ( 0 )
 نشر من قبل Girish Duvvuri
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterizing the atmospheres of planets orbiting M dwarfs requires understanding the spectral energy distributions of M dwarfs over planetary lifetimes. Surveys like MUSCLES, HAZMAT, and FUMES have collected multiwavelength spectra across the spectral types range of Teff and activity, but the extreme ultraviolet flux (EUV, 100 to 912 Angstroms) of most of these stars remains unobserved because of obscuration by the interstellar medium compounded with limited detector sensitivity. While targets with observable EUV flux exist, there is no currently operational facility observing between 150 and 912 Angstroms. Inferring the spectra of exoplanet hosts in this regime is critical to studying the evolution of planetary atmospheres because the EUV heats the top of the thermosphere and drives atmospheric escape. This paper presents our implementation of the differential emission measure technique to reconstruct the EUV spectra of cool dwarfs. We characterize our methods accuracy and precision by applying it to the Sun and AU Mic. We then apply it to three fainter M dwarfs: GJ 832, Barnards Star, and TRAPPIST-1. We demonstrate that with the strongest far ultraviolet (FUV, 912 to 1700 Angstroms) emission lines, observed with Hubble Space Telescope and/or Far Ultraviolet Spectroscopic Explorer, and a coarse X-ray spectrum from either Chandra X-ray Observatory or XMM-Newton, we can reconstruct the Suns EUV spectrum to within a factor of 1.8, with our models formal uncertainties encompassing the data. We report the integrated EUV flux of our M dwarf sample with uncertainties between a factor of 2 to 7 depending on available data quality.

قيم البحث

اقرأ أيضاً

The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations pro vide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planets host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength dependent absorption cross sections that peak in the UV (900-3200 $r{A}$). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between non-contemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly-observed optical chromospheric activity indices -- H$alpha$ equivalent widths and log$_{10}$ L$_{Halpha}$/L$_{bol}$, and the Mount Wilson Ca II H&K S and R$_{HK}$ indices -- using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200-2800 $r{A}$. Our results show a correlation between UV emission line luminosity normalized to the stellar bolometric luminosity and Ca II R$_{HK}$ with standard deviations of 0.31-0.61 dex (factors of $sim$2-4) about the best-fit lines. We also find correlations between normalized UV line luminosity and H$alpha$ log$_{10}$ L$_{Halpha}$/L$_{bol}$ and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.
There have recently been detections of radio emission from low-mass stars, some of which are indicative of star-planet interactions. Motivated by these exciting new results, here we present stellar wind models for the active planet-hosting M dwarf AU Mic. Our models incorporate the large-scale photospheric magnetic field map of the star, reconstructed using the Zeeman-Doppler Imaging method. We use our models to assess if planet-induced radio emission could be generated in the corona of AU Mic, through a mechanism analogous to the sub-Alfvenic Jupiter-Io interaction. In the case that AU Mic has a mass-loss rate of 27 times that of the Sun, we find that both planets b and c in the system can induce radio emission from 10 MHz to 3 GHz in the corona of the host star for the majority of their orbits, with peak flux densities of 10 mJy. Our predicted emission bears a striking similarity to that recently reported from GJ 1151 by Vedantham et al. (2020), which is indicative of being induced by a planet. Detection of such radio emission would allow us to place an upper limit on the mass-loss rate of the star.
In this paper, the ability of the Hinode/EIS instrument to detect radiative signatures of coronal heating is investigated. Recent observational studies of AR cores suggest that both the low and high frequency heating mechanisms are consistent with ob servations. Distinguishing between these possibilities is important for identifying the physical mechanism(s) of the heating. The Differential Emission Measure (DEM) tool is one diagnostic that allows to make this distinction, through the amplitude of the DEM slope coolward of the coronal peak. It is therefore crucial to understand the uncertainties associated with these measurements. Using proper estimations of the uncertainties involved in the problem of DEM inversion, we derive confidence levels on the observed DEM slope. Results show that the uncertainty in the slope reconstruction strongly depends on the number of lines constraining the slope. Typical uncertainty is estimated to be about $pm 1.0$, in the more favorable cases.
We analyse the temporal evolution of the Differential Emission Measure (DEM) of solar active regions and explore its usage in solar flare prediction. The DEM maps are provided by the Gaussian Atmospheric Imaging Assembly (GAIA-DEM) archive, calculate d assuming a Gaussian dependence of the DEM on the logarithmic temperature. We analyse time-series of sixteen solar active regions and a statistically significant sample of 9454 point-in-time observations corresponding to hundreds of regions observed during solar cycle 24. The time-series analysis shows that the temporal derivatives of the Emission Measure dEM/dt and the maximum DEM temperature dTmax/dt frequently exhibit high positive values a few hours before M- and X-class flares, indicating that flaring regions become brighter and hotter as the flare onset approaches. From the point-in-time observations we compute the conditional probabilities of flare occurrences using the distributions of positive values of the dEM/dt, and dTmax/dt and compare them with corresponding flaring probabilities of the total unsigned magnetic flux, a conventionally used, standard flare predictor. For C-class flares, conditional probabilities have lower or similar values with the ones derived for the unsigned magnetic flux, for 24 and 12 hours forecast windows. For M- and X-class flares, these probabilities are higher than those of the unsigned flux for higher parameter values. Shorter forecast windows improve the conditional probabilities of dEM/dt, and dTmax/dt in comparison to those of the unsigned magnetic flux. We conclude that flare forerunner events such as preflare heating or small flare activity prior to major flares reflect on the temporal evolution of EM and Tmax. Of these two, the temporal derivative of the EM could conceivably be used as a credible precursor, or short-term predictor, of an imminent flare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا