ترغب بنشر مسار تعليمي؟ اضغط هنا

Can the Differential Emission Measure constrain the timescale of energy deposition

167   0   0.0 ( 0 )
 نشر من قبل Chlo\\'e Guennou
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the ability of the Hinode/EIS instrument to detect radiative signatures of coronal heating is investigated. Recent observational studies of AR cores suggest that both the low and high frequency heating mechanisms are consistent with observations. Distinguishing between these possibilities is important for identifying the physical mechanism(s) of the heating. The Differential Emission Measure (DEM) tool is one diagnostic that allows to make this distinction, through the amplitude of the DEM slope coolward of the coronal peak. It is therefore crucial to understand the uncertainties associated with these measurements. Using proper estimations of the uncertainties involved in the problem of DEM inversion, we derive confidence levels on the observed DEM slope. Results show that the uncertainty in the slope reconstruction strongly depends on the number of lines constraining the slope. Typical uncertainty is estimated to be about $pm 1.0$, in the more favorable cases.

قيم البحث

اقرأ أيضاً

Galaxies are often used as tracers of the large scale structure (LSS) to measure the Integrated Sachs-Wolfe effect (ISW) by cross-correlating the galaxy survey maps with the Cosmic Microwave Background (CMB) map. We use the Cosmic Infrared Background (CIB) as a tracer of the LSS to perform a theoretical CIB-CMB cross-correlation to measure the ISW for different Planck HFI frequencies. We discuss the detectability of this ISW signal using a Signal-to-noise ratio analysis and find that the ISW detected this way can provide us with the highest SNR for a single tracer ranging from 5 to 6.7 (maximum being for 857 GHz) with the CIB and CMB maps extracted over the whole sky. A Fisher matrix analysis showed that this measurement of the ISW can improve the constraints on the cosmological parameters; especially the equation of state of the dark energy $w$ by $sim 47%$. Performing a more realistic analysis including the galactic dust residuals in the CIB maps over realistic sky fractions shows that the dust power spectra dominate over the CIB power spectra at $ell < 100$ and ISW cant be detected with high SNR. We perform the cross-correlation on the existing CIB-CMB maps over $sim 11%$ of the sky in the southern hemisphere and find that the ISW is not detected with the existing CIB maps over such small sky fractions.
Characterizing the atmospheres of planets orbiting M dwarfs requires understanding the spectral energy distributions of M dwarfs over planetary lifetimes. Surveys like MUSCLES, HAZMAT, and FUMES have collected multiwavelength spectra across the spect ral types range of Teff and activity, but the extreme ultraviolet flux (EUV, 100 to 912 Angstroms) of most of these stars remains unobserved because of obscuration by the interstellar medium compounded with limited detector sensitivity. While targets with observable EUV flux exist, there is no currently operational facility observing between 150 and 912 Angstroms. Inferring the spectra of exoplanet hosts in this regime is critical to studying the evolution of planetary atmospheres because the EUV heats the top of the thermosphere and drives atmospheric escape. This paper presents our implementation of the differential emission measure technique to reconstruct the EUV spectra of cool dwarfs. We characterize our methods accuracy and precision by applying it to the Sun and AU Mic. We then apply it to three fainter M dwarfs: GJ 832, Barnards Star, and TRAPPIST-1. We demonstrate that with the strongest far ultraviolet (FUV, 912 to 1700 Angstroms) emission lines, observed with Hubble Space Telescope and/or Far Ultraviolet Spectroscopic Explorer, and a coarse X-ray spectrum from either Chandra X-ray Observatory or XMM-Newton, we can reconstruct the Suns EUV spectrum to within a factor of 1.8, with our models formal uncertainties encompassing the data. We report the integrated EUV flux of our M dwarf sample with uncertainties between a factor of 2 to 7 depending on available data quality.
We analyse the temporal evolution of the Differential Emission Measure (DEM) of solar active regions and explore its usage in solar flare prediction. The DEM maps are provided by the Gaussian Atmospheric Imaging Assembly (GAIA-DEM) archive, calculate d assuming a Gaussian dependence of the DEM on the logarithmic temperature. We analyse time-series of sixteen solar active regions and a statistically significant sample of 9454 point-in-time observations corresponding to hundreds of regions observed during solar cycle 24. The time-series analysis shows that the temporal derivatives of the Emission Measure dEM/dt and the maximum DEM temperature dTmax/dt frequently exhibit high positive values a few hours before M- and X-class flares, indicating that flaring regions become brighter and hotter as the flare onset approaches. From the point-in-time observations we compute the conditional probabilities of flare occurrences using the distributions of positive values of the dEM/dt, and dTmax/dt and compare them with corresponding flaring probabilities of the total unsigned magnetic flux, a conventionally used, standard flare predictor. For C-class flares, conditional probabilities have lower or similar values with the ones derived for the unsigned magnetic flux, for 24 and 12 hours forecast windows. For M- and X-class flares, these probabilities are higher than those of the unsigned flux for higher parameter values. Shorter forecast windows improve the conditional probabilities of dEM/dt, and dTmax/dt in comparison to those of the unsigned magnetic flux. We conclude that flare forerunner events such as preflare heating or small flare activity prior to major flares reflect on the temporal evolution of EM and Tmax. Of these two, the temporal derivative of the EM could conceivably be used as a credible precursor, or short-term predictor, of an imminent flare.
We use Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) data to reconstruct the plasma properties from differential emission measure (DEM) analysis for a previously studied long-lived, low-latitude coronal hole (CH) over its lifeti me of ten solar rotations. We initially obtain a non-isothermal DEM distribution with a dominant component centered around 0.9 MK and a secondary smaller component at 1.5 - 2.0 MK. We find that deconvolving the data with the instrument point spread function (PSF) to account for long-range scattered light reduces the secondary hot component. Using the 2012 Venus transit and a 2013 lunar eclipse to test the efficiency of this deconvolution, significant amounts of residual stray light are found for the occulted areas. Accounting for this stray light in the error budget of the different AIA filters further reduces the secondary hot emission, yielding CH DEM distributions that are close to isothermal with the main contribution centered around 0.9 MK. Based on these DEMs, we analyze the evolution of the emission measure (EM), density, and averaged temperature during the CHs lifetime. We find that once the CH is clearly observed in EUV images, the bulk of the CH plasma reveals a quite constant state, i.e. temperature and density reveal no major changes, whereas the total CH area and the photospheric magnetic fine structure inside the CH show a distinct evolutionary pattern. These findings suggest that CH plasma properties are mostly set at the CH formation or/and that all CHs have similar plasma properties.
Daily differential emission measure (DEM) distributions of the solar corona are derived from spectra obtained by the Extreme-ultraviolet Variability Experiment (EVE) over a 4-year period starting in 2010 near solar minimum and continuing through the maximum of solar cycle 24. The DEMs are calculated using six strong emission features dominated by Fe lines of charge states VIII, IX, XI, XII, XIV, and XVI that sample the non-flaring coronal temperature range 0.3--5 MK. A proxy for the non-XVIII emission in the wavelength band around the 93.9 AA line is demonstrated. There is little variability in the cool component of the corona (T $<$ 1.3 MK) over the four years, suggesting that the quiet-Sun corona does not respond strongly to the solar cycle, whereas the hotter component (T $>$ 2.0 MK) varies by more than an order of magnitude. A discontinuity in the behavior of coronal diagnostics in 2011 February--March, around the time of the first X-class flare of cycle 24, suggests fundamentally different behavior in the corona under solar minimum and maximum conditions. This global state transition occurs over a period of several months. The DEMs are used to estimate the thermal energy of the visible solar corona (of order $10^{31}$ erg), its radiative energy loss rate (2.5--8 $times 10^{27}$ erg s$^{-1}$), and the corresponding energy turnover timescale (about an hour). The uncertainties associated with the DEMs and these derived values are mostly due to the coronal Fe abundance and density and the CHIANTI atomic line database.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا