ترغب بنشر مسار تعليمي؟ اضغط هنا

Planet-induced radio emission from the coronae of M dwarfs

281   0   0.0 ( 0 )
 نشر من قبل Robert Kavanagh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There have recently been detections of radio emission from low-mass stars, some of which are indicative of star-planet interactions. Motivated by these exciting new results, here we present stellar wind models for the active planet-hosting M dwarf AU Mic. Our models incorporate the large-scale photospheric magnetic field map of the star, reconstructed using the Zeeman-Doppler Imaging method. We use our models to assess if planet-induced radio emission could be generated in the corona of AU Mic, through a mechanism analogous to the sub-Alfvenic Jupiter-Io interaction. In the case that AU Mic has a mass-loss rate of 27 times that of the Sun, we find that both planets b and c in the system can induce radio emission from 10 MHz to 3 GHz in the corona of the host star for the majority of their orbits, with peak flux densities of 10 mJy. Our predicted emission bears a striking similarity to that recently reported from GJ 1151 by Vedantham et al. (2020), which is indicative of being induced by a planet. Detection of such radio emission would allow us to place an upper limit on the mass-loss rate of the star.

قيم البحث

اقرأ أيضاً

There have recently been detections of radio emission from low-mass stars, some of which are indicative of star-planet interactions. Motivated by these exciting new results, in this paper we present Alfven wave-driven stellar wind models of the two a ctive planet-hosting M dwarfs Prox Cen and AU Mic. Our models incorporate large-scale photospheric magnetic field maps reconstructed using the Zeeman-Doppler Imaging method. We obtain a mass-loss rate of $0.25~dot{M}_{odot}$ for the wind of Prox Cen. For the young dwarf AU Mic, we explore two cases: a low and high mass-loss rate. Depending on the properties of the Alfven waves which heat the corona in our wind models, we obtain mass-loss rates of $27$ and $590~dot{M}_{odot}$ for AU Mic. We use our stellar wind models to assess the generation of electron cyclotron maser instability emission in both systems, through a mechanism analogous to the sub-Alfvenic Jupiter-Io interaction. For Prox Cen we do not find any feasible scenario where the planet can induce radio emission in the stars corona, as the planet orbits too far from the star in the super-Alfvenic regime. However, in the case that AU Mic has a stellar wind mass-loss rate of $27~dot{M}_{odot}$, we find that both planets b and c in the system can induce radio emission from $sim10$ MHz to 3 GHz in the corona of the host star for the majority of their orbits, with peak flux densities of $sim10$ mJy. Detection of such radio emission would allow us to place an upper limit on the mass-loss rate of the star.
We consider the magnetic interaction of exoplanets orbiting M-dwarfs, calculating the expected Poynting flux carried upstream along Alfv{e}n wings to the central star. A region of emission analogous to the Io footprint observed in Jupiters aurora is produced, and we calculate the radio flux density generated near the surface of the star via the electron-cyclotron maser instability. We apply the model to produce individual case studies for the TRAPPIST-1, Proxima Centauri, and the dwarf NGTS-1 systems. We predict steady-state flux densities of up to ~ 10 $mu$Jy and sporadic bursts of emission of up to ~ 1 mJy from each case study, suggesting these systems may be detectable with the Very Large Array (VLA) and the Giant Metrewave Radio Telescope (GMRT), and in future with the Square Kilometre Array (SKA). Finally, we present a survey of 85 exoplanets orbiting M-dwarfs, identifying 11 such objects capable of generating radio emission above 10 $mu$Jy.
We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short time-scale in an atte mpt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of electromagnetic waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70$ u_{rm pe}$ ($ u_{rm pe}$ is the electron plasma frequency) in the non-relativistic case and from 10 to 600$ u_{rm pe}$ in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planets host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength dependent absorption cross sections that peak in the UV (900-3200 $r{A}$). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between non-contemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly-observed optical chromospheric activity indices -- H$alpha$ equivalent widths and log$_{10}$ L$_{Halpha}$/L$_{bol}$, and the Mount Wilson Ca II H&K S and R$_{HK}$ indices -- using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200-2800 $r{A}$. Our results show a correlation between UV emission line luminosity normalized to the stellar bolometric luminosity and Ca II R$_{HK}$ with standard deviations of 0.31-0.61 dex (factors of $sim$2-4) about the best-fit lines. We also find correlations between normalized UV line luminosity and H$alpha$ log$_{10}$ L$_{Halpha}$/L$_{bol}$ and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.
We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5+093347, WISEPC J150649.97+702736.0, and WISEPA J174124.26+255319.5. We have placed robust 3-si gma upper limits on the flux density in the 111 - 169 MHz frequency range for these targets: WISE 1506: < 0.72 mJy; WISE 1741: < 0.87 mJy; SIMP 0136: < 0.66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا