ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential Emission Measure Evolution as a Precursor of Solar Flares

94   0   0.0 ( 0 )
 نشر من قبل Ioannis Kontogiannis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the temporal evolution of the Differential Emission Measure (DEM) of solar active regions and explore its usage in solar flare prediction. The DEM maps are provided by the Gaussian Atmospheric Imaging Assembly (GAIA-DEM) archive, calculated assuming a Gaussian dependence of the DEM on the logarithmic temperature. We analyse time-series of sixteen solar active regions and a statistically significant sample of 9454 point-in-time observations corresponding to hundreds of regions observed during solar cycle 24. The time-series analysis shows that the temporal derivatives of the Emission Measure dEM/dt and the maximum DEM temperature dTmax/dt frequently exhibit high positive values a few hours before M- and X-class flares, indicating that flaring regions become brighter and hotter as the flare onset approaches. From the point-in-time observations we compute the conditional probabilities of flare occurrences using the distributions of positive values of the dEM/dt, and dTmax/dt and compare them with corresponding flaring probabilities of the total unsigned magnetic flux, a conventionally used, standard flare predictor. For C-class flares, conditional probabilities have lower or similar values with the ones derived for the unsigned magnetic flux, for 24 and 12 hours forecast windows. For M- and X-class flares, these probabilities are higher than those of the unsigned flux for higher parameter values. Shorter forecast windows improve the conditional probabilities of dEM/dt, and dTmax/dt in comparison to those of the unsigned magnetic flux. We conclude that flare forerunner events such as preflare heating or small flare activity prior to major flares reflect on the temporal evolution of EM and Tmax. Of these two, the temporal derivative of the EM could conceivably be used as a credible precursor, or short-term predictor, of an imminent flare.

قيم البحث

اقرأ أيضاً

This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.
In this paper we present the differential emission measures (DEMs) of two sub-A class microflares observed in hard X-rays (HXRs) by the FOXSI-2 sounding rocket experiment, on 2014 December 11. The second FOXSI (Focusing Optics X-ray Solar Imager) fli ght was coordinated with instruments Hinode/XRT and SDO/AIA, which provided observations in soft X-rays (SXR) and Extreme Ultraviolet (EUV). This unique dataset offers an unprecedented temperature coverage useful for characterizing the plasma temperature distribution of microflares. By combining data from FOXSI-2, XRT, and AIA, we determined a well-constrained DEM for the microflares. The resulting DEMs peak around 3MK and extend beyond 10MK. The emission measures determined from FOXSI-2 were lower than 10 26cm-5 for temperatures higher than 5MK; faint emission in this range is best measured in HXRs. The coordinated FOXSI-2 observations produce one of the few definitive measurements of the distribution and the amount of plasma above 5MK in microflares. We utilize the multi-thermal DEMs to calculate the amount of thermal energy released during both the microflares as ~ 5.0 x 10 28 ergs for Microflare 1 and ~ 1.6 x 10 28 ergs for Microflare 2. We also show the multi-thermal DEMs provide a more comprehensive thermal energy estimates than isothermal approximation, which systematically underestimates the amount of thermal energy released.
We use Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) data to reconstruct the plasma properties from differential emission measure (DEM) analysis for a previously studied long-lived, low-latitude coronal hole (CH) over its lifeti me of ten solar rotations. We initially obtain a non-isothermal DEM distribution with a dominant component centered around 0.9 MK and a secondary smaller component at 1.5 - 2.0 MK. We find that deconvolving the data with the instrument point spread function (PSF) to account for long-range scattered light reduces the secondary hot component. Using the 2012 Venus transit and a 2013 lunar eclipse to test the efficiency of this deconvolution, significant amounts of residual stray light are found for the occulted areas. Accounting for this stray light in the error budget of the different AIA filters further reduces the secondary hot emission, yielding CH DEM distributions that are close to isothermal with the main contribution centered around 0.9 MK. Based on these DEMs, we analyze the evolution of the emission measure (EM), density, and averaged temperature during the CHs lifetime. We find that once the CH is clearly observed in EUV images, the bulk of the CH plasma reveals a quite constant state, i.e. temperature and density reveal no major changes, whereas the total CH area and the photospheric magnetic fine structure inside the CH show a distinct evolutionary pattern. These findings suggest that CH plasma properties are mostly set at the CH formation or/and that all CHs have similar plasma properties.
We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the S olar X-ray Spectrometer (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(epsilon) from the flare by integrating a series of isothermal plasma flux. We find that multi-temperature integrated flux F(epsilon) is a power-law function of epsilon with a spectral index (gamma) approx -4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E= 4 - 15 keV is dominated by temperatures of T= 12 - 50 MK, while the multi-thermal power-law DEM index (gamma) varies in the range of -4.4 and -5.7. The temporal evolution of the X-ray flux F(epsilon,t) assuming a multi-temperature plasma governed by thermal conduction cooling reveals that the temperature-dependent cooling time varies between 296 and 4640 s and the electron density (n_e) varies in the range of n_e= (1.77-29.3)*10^10 cm-3. Employing temporal evolution technique in the current study as an alternative method for separating thermal from non-thermal components in the energy spectra, we measure the break-energy point ranging between 14 and 21pm1.0 keV.
Characterizing the atmospheres of planets orbiting M dwarfs requires understanding the spectral energy distributions of M dwarfs over planetary lifetimes. Surveys like MUSCLES, HAZMAT, and FUMES have collected multiwavelength spectra across the spect ral types range of Teff and activity, but the extreme ultraviolet flux (EUV, 100 to 912 Angstroms) of most of these stars remains unobserved because of obscuration by the interstellar medium compounded with limited detector sensitivity. While targets with observable EUV flux exist, there is no currently operational facility observing between 150 and 912 Angstroms. Inferring the spectra of exoplanet hosts in this regime is critical to studying the evolution of planetary atmospheres because the EUV heats the top of the thermosphere and drives atmospheric escape. This paper presents our implementation of the differential emission measure technique to reconstruct the EUV spectra of cool dwarfs. We characterize our methods accuracy and precision by applying it to the Sun and AU Mic. We then apply it to three fainter M dwarfs: GJ 832, Barnards Star, and TRAPPIST-1. We demonstrate that with the strongest far ultraviolet (FUV, 912 to 1700 Angstroms) emission lines, observed with Hubble Space Telescope and/or Far Ultraviolet Spectroscopic Explorer, and a coarse X-ray spectrum from either Chandra X-ray Observatory or XMM-Newton, we can reconstruct the Suns EUV spectrum to within a factor of 1.8, with our models formal uncertainties encompassing the data. We report the integrated EUV flux of our M dwarf sample with uncertainties between a factor of 2 to 7 depending on available data quality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا