ﻻ يوجد ملخص باللغة العربية
Most computer science conferences rely on paper bidding to assign reviewers to papers. Although paper bidding enables high-quality assignments in days of unprecedented submission numbers, it also opens the door for dishonest reviewers to adversarially influence paper reviewing assignments. Anecdotal evidence suggests that some reviewers bid on papers by friends or colluding authors, even though these papers are outside their area of expertise, and recommend them for acceptance without considering the merit of the work. In this paper, we study the efficacy of such bid manipulation attacks and find that, indeed, they can jeopardize the integrity of the review process. We develop a novel approach for paper bidding and assignment that is much more robust against such attacks. We show empirically that our approach provides robustness even when dishonest reviewers collude, have full knowledge of the assignment systems internal workings, and have access to the systems inputs. In addition to being more robust, the quality of our paper review assignments is comparable to that of current, non-robust assignment approaches.
We study robust testing and estimation of discrete distributions in the strong contamination model. We consider both the centralized setting and the distributed setting with information constraints including communication and local privacy (LDP) cons
In this paper, we investigate the problem about how to bid in repeated contextual first price auctions. We consider a single bidder (learner) who repeatedly bids in the first price auctions: at each time $t$, the learner observes a context $x_tin mat
The physical, black-box hard-label setting is arguably the most realistic threat model for cyber-physical vision systems. In this setting, the attacker only has query access to the model and only receives the top-1 class label without confidence info
The rapid growth of Decentralized Finance (DeFi) boosts the Ethereum ecosystem. At the same time, attacks towards DeFi applications (apps) are increasing. However, to the best of our knowledge, existing smart contract vulnerability detection tools ca
Automatically detecting software vulnerabilities in source code is an important problem that has attracted much attention. In particular, deep learning-based vulnerability detectors, or DL-based detectors, are attractive because they do not need huma