ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Physical Hard-Label Attacks on Deep Learning Visual Classification

301   0   0.0 ( 0 )
 نشر من قبل Ryan Feng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The physical, black-box hard-label setting is arguably the most realistic threat model for cyber-physical vision systems. In this setting, the attacker only has query access to the model and only receives the top-1 class label without confidence information. Creating small physical stickers that are robust to environmental variation is difficult in the discrete and discontinuous hard-label space because the attack must both design a small shape to perturb within and find robust noise to fill it with. Unfortunately, we find that existing $ell_2$ or $ell_infty$ minimizing hard-label attacks do not easily extend to finding such robust physical perturbation attacks. Thus, we propose GRAPHITE, the first algorithm for hard-label physical attacks on computer vision models. We show that survivability, an estimate of physical variation robustness, can be used in new ways to generate small masks and is a sufficiently smooth function to optimize with gradient-free optimization. We use GRAPHITE to attack a traffic sign classifier and a publicly-available Automatic License Plate Recognition (ALPR) tool using only query access. We evaluate both tools in real-world field tests to measure its physical-world robustness. We successfully cause a Stop sign to be misclassified as a Speed Limit 30 km/hr sign in 95.7% of physical images and cause errors in 75% of physical images for the ALPR tool.



قيم البحث

اقرأ أيضاً

This work provides the community with a timely comprehensive review of backdoor attacks and countermeasures on deep learning. According to the attackers capability and affected stage of the machine learning pipeline, the attack surfaces are recognize d to be wide and then formalized into six categorizations: code poisoning, outsourcing, pretrained, data collection, collaborative learning and post-deployment. Accordingly, attacks under each categorization are combed. The countermeasures are categorized into four general classes: blind backdoor removal, offline backdoor inspection, online backdoor inspection, and post backdoor removal. Accordingly, we review countermeasures, and compare and analyze their advantages and disadvantages. We have also reviewed the flip side of backdoor attacks, which are explored for i) protecting intellectual property of deep learning models, ii) acting as a honeypot to catch adversarial example attacks, and iii) verifying data deletion requested by the data contributor.Overall, the research on defense is far behind the attack, and there is no single defense that can prevent all types of backdoor attacks. In some cases, an attacker can intelligently bypass existing defenses with an adaptive attack. Drawing the insights from the systematic review, we also present key areas for future research on the backdoor, such as empirical security evaluations from physical trigger attacks, and in particular, more efficient and practical countermeasures are solicited.
The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, ofte n followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.
162 - Mingfu Xue , Can He , Shichang Sun 2021
Deep neural networks (DNN) have been widely deployed in various applications. However, many researches indicated that DNN is vulnerable to backdoor attacks. The attacker can create a hidden backdoor in target DNN model, and trigger the malicious beha viors by submitting specific backdoor instance. However, almost all the existing backdoor works focused on the digital domain, while few studies investigate the backdoor attacks in real physical world. Restricted to a variety of physical constraints, the performance of backdoor attacks in the real physical world will be severely degraded. In this paper, we propose a robust physical backdoor attack method, PTB (physical transformations for backdoors), to implement the backdoor attacks against deep learning models in the real physical world. Specifically, in the training phase, we perform a series of physical transformations on these injected backdoor instances at each round of model training, so as to simulate various transformations that a backdoor may experience in real world, thus improves its physical robustness. Experimental results on the state-of-the-art face recognition model show that, compared with the backdoor methods that without PTB, the proposed attack method can significantly improve the performance of backdoor attacks in real physical world. Under various complex physical conditions, by injecting only a very small ratio (0.5%) of backdoor instances, the attack success rate of physical backdoor attacks with the PTB method on VGGFace is 82%, while the attack success rate of backdoor attacks without the proposed PTB method is lower than 11%. Meanwhile, the normal performance of the target DNN model has not been affected.
Deep neural networks (DNNs) have been proven vulnerable to backdoor attacks, where hidden features (patterns) trained to a normal model, which is only activated by some specific input (called triggers), trick the model into producing unexpected behav ior. In this paper, we create covert and scattered triggers for backdoor attacks, invisible backdoors, where triggers can fool both DNN models and human inspection. We apply our invisible backdoors through two state-of-the-art methods of embedding triggers for backdoor attacks. The first approach on Badnets embeds the trigger into DNNs through steganography. The second approach of a trojan attack uses two types of additional regularization terms to generate the triggers with irregular shape and size. We use the Attack Success Rate and Functionality to measure the performance of our attacks. We introduce two novel definitions of invisibility for human perception; one is conceptualized by the Perceptual Adversarial Similarity Score (PASS) and the other is Learned Perceptual Image Patch Similarity (LPIPS). We show that the proposed invisible backdoors can be fairly effective across various DNN models as well as four datasets MNIST, CIFAR-10, CIFAR-100, and GTSRB, by measuring their attack success rates for the adversary, functionality for the normal users, and invisibility scores for the administrators. We finally argue that the proposed invisible backdoor attacks can effectively thwart the state-of-the-art trojan backdoor detection approaches, such as Neural Cleanse and TABOR.
3D point cloud classification has many safety-critical applications such as autonomous driving and robotic grasping. However, several studies showed that it is vulnerable to adversarial attacks. In particular, an attacker can make a classifier predic t an incorrect label for a 3D point cloud via carefully modifying, adding, and/or deleting a small number of its points. Randomized smoothing is state-of-the-art technique to build certifiably robust 2D image classifiers. However, when applied to 3D point cloud classification, randomized smoothing can only certify robustness against adversarially modified points. In this work, we propose PointGuard, the first defense that has provable robustness guarantees against adversarially modified, added, and/or deleted points. Specifically, given a 3D point cloud and an arbitrary point cloud classifier, our PointGuard first creates multiple subsampled point clouds, each of which contains a random subset of the points in the original point cloud; then our PointGuard predicts the label of the original point cloud as the majority vote among the labels of the subsampled point clouds predicted by the point cloud classifier. Our first major theoretical contribution is that we show PointGuard provably predicts the same label for a 3D point cloud when the number of adversarially modified, added, and/or deleted points is bounded. Our second major theoretical contribution is that we prove the tightness of our derived bound when no assumptions on the point cloud classifier are made. Moreover, we design an efficient algorithm to compute our certified robustness guarantees. We also empirically evaluate PointGuard on ModelNet40 and ScanNet benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا