ﻻ يوجد ملخص باللغة العربية
Mobility is severely impacted in patients with Parkinsons disease (PD), especially when they experience involuntary stopping from the freezing of gait (FOG). Understanding the neurophysiological difference between voluntary stopping and involuntary stopping caused by FOG is vital for the detection and potential intervention of FOG in the daily lives of patients. This study characterised the electroencephalographic (EEG) signature associated with FOG in contrast to voluntary stopping. The protocol consisted of a timed up-and-go (TUG) task and an additional TUG task with a voluntary stopping component, where participants reacted to verbal stop and walk instructions by voluntarily stopping or walking. Event-related spectral perturbation (ERSP) analysis was used to study the dynamics of the EEG spectra induced by different walking phases, which included normal walking, voluntary stopping and episodes of involuntary stopping (FOG), as well as the transition windows between normal walking and voluntary stopping or FOG. These results demonstrate for the first time that the EEG signal during the transition from walking to voluntary stopping is distinguishable from that of the transition to involuntary stopping caused by FOG. The EEG signature of voluntary stopping exhibits a significantly decreased power spectrum compared to that of FOG episodes, with distinctly different patterns in the delta and low-beta power in the central area. These findings suggest the possibility of a practical EEG-based treatment strategy that can accurately predict FOG episodes, excluding the potential confound of voluntary stopping.
Over the years motor deficit in Parkinsons Disease (PD) patients was largely studied, however, no consistent pattern of relations between quantitative electroencephalography (qEEG) and motor scales emerged. There is a general lack of information on t
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th
About 90 percent of people with Parkinsons disease (PD) experience decreased functional communication due to the presence of voice and speech disorders associated with dysarthria that can be characterized by monotony of pitch (or fundamental frequenc
While the emerging evidence indicates that the pathogenesis of Parkinsons disease (PD) is strongly correlated to the accumulation of alpha-synuclein ({alpha}-syn) aggregates, there has been no clinical success in anti-aggregation agents for the disea
The loss of melanized neurons in the substantia nigra pars compacta is a primary feature in Parkinsons disease (PD). Iron deposition occurs in conjunction with this loss. Loss of nigral neurons should remove barriers for diffusion and increase diffus