ترغب بنشر مسار تعليمي؟ اضغط هنا

EchoWear: Smartwatch Technology for Voice and Speech Treatments of Patients with Parkinsons Disease

136   0   0.0 ( 0 )
 نشر من قبل Harishchandra Dubey
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

About 90 percent of people with Parkinsons disease (PD) experience decreased functional communication due to the presence of voice and speech disorders associated with dysarthria that can be characterized by monotony of pitch (or fundamental frequency), reduced loudness, irregular rate of speech, imprecise consonants, and changes in voice quality. Speech-language pathologists (SLPs) work with patients with PD to improve speech intelligibility using various intensive in-clinic speech treatments. SLPs also prescribe home exercises to enhance generalization of speech strategies outside of the treatment room. Even though speech therapies are found to be highly effective in improving vocal loudness and speech quality, patients with PD find it difficult to follow the prescribed exercise regimes outside the clinic and to continue exercises once the treatment is completed. SLPs need techniques to monitor compliance and accuracy of their patients exercises at home and in ecologically valid communication situations. We have designed EchoWear, a smartwatch-based system, to remotely monitor speech and voice exercises as prescribed by SLPs. We conducted a study of 6 individuals; three with PD and three healthy controls. To assess the performance of EchoWear technology compared with high quality audio equipment obtained in a speech laboratory. Our preliminary analysis shows promising outcomes for using EchoWear in speech therapies for people with PD. Keywords: Dysarthria; knowledge-based speech processing; Parkinsons disease; smartwatch; speech therapy; wearable system.



قيم البحث

اقرأ أيضاً

Recent studies have demonstrated that analysis of laboratory-quality voice recordings can be used to accurately differentiate people diagnosed with Parkinsons disease (PD) from healthy controls (HC). These findings could help facilitate the developme nt of remote screening and monitoring tools for PD. In this study, we analyzed 2759 telephone-quality voice recordings from 1483 PD and 15321 recordings from 8300 HC participants. To account for variations in phonetic backgrounds, we acquired data from seven countries. We developed a statistical framework for analyzing voice, whereby we computed 307 dysphonia measures that quantify different properties of voice impairment, such as, breathiness, roughness, monopitch, hoarse voice quality, and exaggerated vocal tremor. We used feature selection algorithms to identify robust parsimonious feature subsets, which were used in combination with a Random Forests (RF) classifier to accurately distinguish PD from HC. The best 10-fold cross-validation performance was obtained using Gram-Schmidt Orthogonalization (GSO) and RF, leading to mean sensitivity of 64.90% (standard deviation, SD 2.90%) and mean specificity of 67.96% (SD 2.90%). This large-scale study is a step forward towards assessing the development of a reliable, cost-effective and practical clinical decision support tool for screening the population at large for PD using telephone-quality voice.
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that th e patho-cascades of the two diseases overlap. Despite this evidence, these two diseases are rarely studied in a joint manner. In this paper, we utilize clinical, imaging, genetic, and biospecimen features to cluster AD and PD patients into the same feature space. By training a machine learning classifier on the combined feature space, we predict the disease stage of patients two years after their baseline visits. We observed a considerable improvement in the prediction accuracy of Parkinsons dementia patients due to combined training on Alzheimers and Parkinsons patients, thereby affirming the claim that these two diseases can be jointly studied.
Mobility is severely impacted in patients with Parkinsons disease (PD), especially when they experience involuntary stopping from the freezing of gait (FOG). Understanding the neurophysiological difference between voluntary stopping and involuntary s topping caused by FOG is vital for the detection and potential intervention of FOG in the daily lives of patients. This study characterised the electroencephalographic (EEG) signature associated with FOG in contrast to voluntary stopping. The protocol consisted of a timed up-and-go (TUG) task and an additional TUG task with a voluntary stopping component, where participants reacted to verbal stop and walk instructions by voluntarily stopping or walking. Event-related spectral perturbation (ERSP) analysis was used to study the dynamics of the EEG spectra induced by different walking phases, which included normal walking, voluntary stopping and episodes of involuntary stopping (FOG), as well as the transition windows between normal walking and voluntary stopping or FOG. These results demonstrate for the first time that the EEG signal during the transition from walking to voluntary stopping is distinguishable from that of the transition to involuntary stopping caused by FOG. The EEG signature of voluntary stopping exhibits a significantly decreased power spectrum compared to that of FOG episodes, with distinctly different patterns in the delta and low-beta power in the central area. These findings suggest the possibility of a practical EEG-based treatment strategy that can accurately predict FOG episodes, excluding the potential confound of voluntary stopping.
The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD pati ents who performed a total of 14 MI-BCI sessions targeting lower extremities. EEG was recorded during the initial calibration phase of each session, and the specific BCI models were produced by using Spectrally weighted Common Spatial Patterns (SpecCSP), Source Power Comodulation (SPoC) and Filter-Bank Common Spatial Patterns (FBCSP) methods. The results showed that FBCSP outperformed SPoC in terms of accuracy, and both SPoC and SpecCSP in terms of the false-positive ratio. The study also demonstrates that PD patients were capable of operating MI-BCI, although with lower accuracy.
We investigate a set of techniques for RNN Transducers (RNN-Ts) that were instrumental in lowering the word error rate on three different tasks (Switchboard 300 hours, conversational Spanish 780 hours and conversational Italian 900 hours). The techni ques pertain to architectural changes, speaker adaptation, language model fusion, model combination and general training recipe. First, we introduce a novel multiplicative integration of the encoder and prediction network vectors in the joint network (as opposed to additive). Second, we discuss the applicability of i-vector speaker adaptation to RNN-Ts in conjunction with data perturbation. Third, we explore the effectiveness of the recently proposed density ratio language model fusion for these tasks. Last but not least, we describe the other components of our training recipe and their effect on recognition performance. We report a 5.9% and 12.5% word error rate on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and a 12.7% WER on the Mozilla CommonVoice Italian test set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا