ﻻ يوجد ملخص باللغة العربية
Modern deep learning-based models have seen outstanding performance improvement with speech enhancement tasks. The number of parameters of state-of-the-art models, however, is often too large to be deployed on devices for real-world applications. To this end, we propose Tiny Recurrent U-Net (TRU-Net), a lightweight online inference model that matches the performance of current state-of-the-art models. The size of the quantized version of TRU-Net is 362 kilobytes, which is small enough to be deployed on edge devices. In addition, we combine the small-sized model with a new masking method called phase-aware $beta$-sigmoid mask, which enables simultaneous denoising and dereverberation. Results of both objective and subjective evaluations have shown that our model can achieve competitive performance with the current state-of-the-art models on benchmark datasets using fewer parameters by orders of magnitude.
In this work, we tackle a denoising and dereverberation problem with a single-stage framework. Although denoising and dereverberation may be considered two separate challenging tasks, and thus, two modules are typically required for each task, we sho
Background noise and room reverberation are regarded as two major factors to degrade the subjective speech quality. In this paper, we propose an integrated framework to address simultaneous denoising and dereverberation under complicated scenario env
In this paper, we propose a model to perform speech dereverberation by estimating its spectral magnitude from the reverberant counterpart. Our models are capable of extracting features that take into account both short and long-term dependencies in t
We propose an algorithm to denoise speakers from a single microphone in the presence of non-stationary and dynamic noise. Our approach is inspired by the recent success of neural network models separating speakers from other speakers and singers from
Neural audio synthesis is an actively researched topic, having yielded a wide range of techniques that leverages machine learning architectures. Google Magenta elaborated a novel approach called Differential Digital Signal Processing (DDSP) that inco