ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time Timbre Transfer and Sound Synthesis using DDSP

364   0   0.0 ( 0 )
 نشر من قبل Cumhur Erkut
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural audio synthesis is an actively researched topic, having yielded a wide range of techniques that leverages machine learning architectures. Google Magenta elaborated a novel approach called Differential Digital Signal Processing (DDSP) that incorporates deep neural networks with preconditioned digital signal processing techniques, reaching state-of-the-art results especially in timbre transfer applications. However, most of these techniques, including the DDSP, are generally not applicable in real-time constraints, making them ineligible in a musical workflow. In this paper, we present a real-time implementation of the DDSP library embedded in a virtual synthesizer as a plug-in that can be used in a Digital Audio Workstation. We focused on timbre transfer from learned representations of real instruments to arbitrary sound inputs as well as controlling these models by MIDI. Furthermore, we developed a GUI for intuitive high-level controls which can be used for post-processing and manipulating the parameters estimated by the neural network. We have conducted a user experience test with seven participants online. The results indicated that our users found the interface appealing, easy to understand, and worth exploring further. At the same time, we have identified issues in the timbre transfer quality, in some components we did not implement, and in installation and distribution of our plugin. The next iteration of our design will address these issues. Our real-time MATLAB and JUCE implementations are available at https://github.com/SMC704/juce-ddsp and https://github.com/SMC704/matlab-ddsp , respectively.



قيم البحث

اقرأ أيضاً

Machine learning based singing voice models require large datasets and lengthy training times. In this work we present a lightweight architecture, based on the Differentiable Digital Signal Processing (DDSP) library, that is able to output song-like utterances conditioned only on pitch and amplitude, after twelve hours of training using small datasets of unprocessed audio. The results are promising, as both the melody and the singers voice are recognizable. In addition, we present two zero-configuration tools to train new models and experiment with them. Currently we are exploring the latent space representation, which is included in the DDSP library, but not in the original DDSP examples. Our results indicate that the latent space improves both the identification of the singer as well as the comprehension of the lyrics. Our code is available at https://github.com/juanalonso/DDSP-singing-experiments with links to the zero-configuration notebooks, and our sound examples are at https://juanalonso.github.io/DDSP-singing-experiments/ .
In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness. In principle, one could apply image-based style transfer techniques to a time-frequency representation of an audio signal, but this depends on having a representation that allows independent manipulation of timbre as well as high-quality waveform generation. We introduce TimbreTron, a method for musical timbre transfer which applies image domain style transfer to a time-frequency representation of the audio signal, and then produces a high-quality waveform using a conditional WaveNet synthesizer. We show that the Constant Q Transform (CQT) representation is particularly well-suited to convolutional architectures due to its approximate pitch equivariance. Based on human perceptual evaluations, we confirmed that TimbreTron recognizably transferred the timbre while otherwise preserving the musical content, for both monophonic and polyphonic samples.
We present a novel learning-based approach to compute the eigenmodes and acoustic transfer data for the sound synthesis of arbitrary solid objects. Our approach combines two network-based solutions to formulate a complete learning-based 3D modal soun d model. This includes a 3D sparse convolution network as the eigendecomposition solver and an encoder-decoder network for the prediction of the Far-Field Acoustic Transfer maps (FFAT Maps). We use our approach to compute the vibration modes (eigenmodes) and FFAT maps for each mode (acoustic data) for arbitrary-shaped objects at interactive rates without any precomputed dataset for any new object. Our experimental results demonstrate the effectiveness and benefits of our approach. We compare its accuracy and efficiency with physically-based sound synthesis methods.
Previously, we established a lung sound database, HF_Lung_V2 and proposed convolutional bidirectional gated recurrent unit (CNN-BiGRU) models with adequate ability for inhalation, exhalation, continuous adventitious sound (CAS), and discontinuous adv entitious sound detection in the lung sound. In this study, we proceeded to build a tracheal sound database, HF_Tracheal_V1, containing 11107 of 15-second tracheal sound recordings, 23087 inhalation labels, 16728 exhalation labels, and 6874 CAS labels. The tracheal sound in HF_Tracheal_V1 and the lung sound in HF_Lung_V2 were either combined or used alone to train the CNN-BiGRU models for respective lung and tracheal sound analysis. Different training strategies were investigated and compared: (1) using full training (training from scratch) to train the lung sound models using lung sound alone and train the tracheal sound models using tracheal sound alone, (2) using a mixed set that contains both the lung and tracheal sound to train the models, and (3) using domain adaptation that finetuned the pre-trained lung sound models with the tracheal sound data and vice versa. Results showed that the models trained only by lung sound performed poorly in the tracheal sound analysis and vice versa. However, the mixed set training and domain adaptation can improve the performance of exhalation and CAS detection in the lung sound, and inhalation, exhalation, and CAS detection in the tracheal sound compared to positive controls (lung models trained only by lung sound and vice versa). Especially, a model derived from the mixed set training prevails in the situation of killing two birds with one stone.
An anomalous sound detection system to detect unknown anomalous sounds usually needs to be built using only normal sound data. Moreover, it is desirable to improve the system by effectively using a small amount of anomalous sound data, which will be accumulated through the systems operation. As one of the methods to meet these requirements, we focus on a binary classification model that is developed by using not only normal data but also outlier data in the other domains as pseudo-anomalous sound data, which can be easily updated by using anomalous data. In this paper, we implement a new loss function based on metric learning to learn the distance relationship from each class centroid in feature space for the binary classification model. The proposed multi-task learning of the binary classification and the metric learning makes it possible to build the feature space where the within-class variance is minimized and the between-class variance is maximized while keeping normal and anomalous classes linearly separable. We also investigate the effectiveness of additionally using anomalous sound data for further improving the binary classification model. Our results showed that multi-task learning using binary classification and metric learning to consider the distance from each class centroid in the feature space is effective, and performance can be significantly improved by using even a small amount of anomalous data during training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا