ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a model to perform speech dereverberation by estimating its spectral magnitude from the reverberant counterpart. Our models are capable of extracting features that take into account both short and long-term dependencies in the signal through a convolutional encoder (which extracts features from a short, bounded context of frames) and a recurrent neural network for extracting long-term information. Our model outperforms a recently proposed model that uses different context information depending on the reverberation time, without requiring any sort of additional input, yielding improvements of up to 0.4 on PESQ, 0.3 on STOI, and 1.0 on POLQA relative to reverberant speech. We also show our model is able to generalize to real room impulse responses even when only trained with simulated room impulse responses, different speakers, and high reverberation times. Lastly, listening tests show the proposed method outperforming benchmark models in reduction of perceived reverberation.
Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverbe
Deep neural network with dual-path bi-directional long short-term memory (BiLSTM) block has been proved to be very effective in sequence modeling, especially in speech separation, e.g. DPRNN-TasNet cite{luo2019dual}. In this paper, we propose several
In this paper, we present a method for jointly-learning a microphone selection mechanism and a speech enhancement network for multi-channel speech enhancement with an ad-hoc microphone array. The attention-based microphone selection mechanism is trai
Multi-channel speech enhancement aims to extract clean speech from a noisy mixture using signals captured from multiple microphones. Recently proposed methods tackle this problem by incorporating deep neural network models with spatial filtering tech
In this paper, we propose a multi-channel network for simultaneous speech dereverberation, enhancement and separation (DESNet). To enable gradient propagation and joint optimization, we adopt the attentional selection mechanism of the multi-channel f