ترغب بنشر مسار تعليمي؟ اضغط هنا

An ultralow-noise superconducting radio-frequency ion trap for frequency metrology with highly charged ions

107   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of $Qapprox2.3times 10^5$ at a temperature of 4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts which limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron beam ion trap and deceleration beamline supplying highly charged ions (HCI), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole mass filter with HCI, and trapping of Doppler-cooled ${}^9text{Be}^+$ Coulomb crystals.



قيم البحث

اقرأ أيضاً

A low-energy, compact and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by a pair of high-temperature superconducting coils. The electron-beam energy of the SW-EBIT is in the range of 30-4000 eV, and the maximum electron-beam current is up to 9 mA. Acting as a source of highly charged ions, the ion-beam optics for extraction is integrated, including an ion extractor and an einzel lens. A Wien filter is then used to measure the charge-state distribution of the extracted ions. In this work, the tungsten ions below the charge state of 15 have been produced, extracted, and analyzed. The charge-state distributions and spectra in the range of 530-580 nm of tungsten ions have been measured simultaneously with the electron-beam energy of 279 eV and 300 eV, which preliminarily indicates that the 549.9 nm line comes from $W^{14+}$.
A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf source RF2. This second rf field produces a controlled coupling between the spin states dressed by RF1. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the interaction. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly-dressed states and escape out of the trap. Our results also show that when the frequencies of the fields RF1 and RF2 are separated by at least the Rabi frequency associated with RF1, additional evaporation zones appear which can make this process more efficient.
82 - Paul Indelicato 2019
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot beevaluated with present-day QED calculations. Experimental methods, their evolution over time, as well as progress in accuracy are presented. A detailed, quantitative, comparison between theory and experiment is presented for transition energies in few-electron ions. In particular the impact of the nuclear size correction on the quality of QED tests as a function of the atomic number is discussed.The cases of hyperfine transition energies and of bound-electron Land{e} $g$-factor are also considered.
We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H_2^+ and HD^+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 ppb are considered.
127 - Janus H. Wesenberg 2009
We investigate the possible form of ideal intersections for two-dimensional rf trap networks suitable for quantum information processing with trapped ions. We show that the lowest order multipole component of the rf field that can contribute to an id eal intersection is a hexapole term uniquely determined by the tangents of the intersecting paths. The corresponding ponderomotive potential does not provide any confinement perpendicular to the paths if these intersect at right angles, indicating that ideal right-angle X intersections are impossible to achieve with hexapole fields. Based on this result, we propose an implementation of an ideal oblique-X intersection using a three-dimensional electrode structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا