ﻻ يوجد ملخص باللغة العربية
We investigate the possible form of ideal intersections for two-dimensional rf trap networks suitable for quantum information processing with trapped ions. We show that the lowest order multipole component of the rf field that can contribute to an ideal intersection is a hexapole term uniquely determined by the tangents of the intersecting paths. The corresponding ponderomotive potential does not provide any confinement perpendicular to the paths if these intersect at right angles, indicating that ideal right-angle X intersections are impossible to achieve with hexapole fields. Based on this result, we propose an implementation of an ideal oblique-X intersection using a three-dimensional electrode structure.
A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf
We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of $Qapprox2.3times 10^5$ at a temperature of
We present an evaporative cooling technique for atoms trapped in an optical dipole trap that benefits from narrow optical transitions. For an appropriate choice of wavelength and polarization, a single laser beam leads to opposite light-shifts in two
We demonstrate a scheme for magneto-optically trapping strontium monofluoride (SrF) molecules at temperatures one order of magnitude lower and phase space densities three orders of magnitude higher than obtained previously with laser-cooled molecules
As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost and electrical failure rate all bec