We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H_2^+ and HD^+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 ppb are considered.
Expectation values of the Breit operators and the $Q$ terms are calculated for HD$^+$ with the vibrational number $v=0-4$ and the total angular momentum $L=0-4$. Relativistic and radiative corrections to some ro-vibrational transition frequencies are
determined. Numerical uncertainty in $R_{infty}alpha^2$ order correction is reduced to sub kHz or smaller. Our work provides an independent verification of Korobovs calculations [Phys. Rev. A {bf74}, 052506 (2006); {bf77}, 022509 (2008)].
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection
of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.
The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H + 2 and HD + for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for metrology of nucle
ar-to-electron mass ratios, we show that they are also sensitive to the radii of the proton and deuteron and to the Rydberg constant at the level of the current discrepancies colloquially known as the proton size puzzle. The required level of accuracy, in the 10 --12 range, can be reached both by experiments, using Doppler-free two-photon spectroscopy schemes, and by theoretical predictions. It is shown how the measurement of several well-chosen rovibrational transitions may shed new light on the proton-radius puzzle, provide an alternative accurate determination of the Rydberg constant, and yield new values of the proton-to-electron and deuteron-to-proton mass ratios with one order of magnitude higher precision.
Spectroscopy is a powerful tool for studying molecules and is commonly performed on large thermal molecular ensembles that are perturbed by motional shifts and interactions with the environment and one another, resulting in convoluted spectra and lim
ited resolution. Here, we use generally applicable quantum-logic techniques to prepare a trapped molecular ion in a single quantum state, drive terahertz rotational transitions with an optical frequency comb, and read out the final state non-destructively, leaving the molecule ready for further manipulation. We resolve rotational transitions to 11 significant digits and derive the rotational constant of CaH+ to be B_R = 142501777.9(1.7) kHz. Our approach suits a wide range of molecular ions, including polyatomics and species relevant for tests of fundamental physics, chemistry, and astrophysics.
We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of $Qapprox2.3times 10^5$ at a temperature of
4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts which limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron beam ion trap and deceleration beamline supplying highly charged ions (HCI), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole mass filter with HCI, and trapping of Doppler-cooled ${}^9text{Be}^+$ Coulomb crystals.
B. Roth
,J. Koelemeij
,S. Schiller
.
(2006)
.
"Precision Spectroscopy of Molecular Hydrogen Ions: Towards Frequency Metrology of Particle Masses"
.
Vladimir I. Korobov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا