ترغب بنشر مسار تعليمي؟ اضغط هنا

A low-energy compact Shanghai-Wuhan electron beam ion trap for extraction of highly charged ions

88   0   0.0 ( 0 )
 نشر من قبل Shiyong Liang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A low-energy, compact and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by a pair of high-temperature superconducting coils. The electron-beam energy of the SW-EBIT is in the range of 30-4000 eV, and the maximum electron-beam current is up to 9 mA. Acting as a source of highly charged ions, the ion-beam optics for extraction is integrated, including an ion extractor and an einzel lens. A Wien filter is then used to measure the charge-state distribution of the extracted ions. In this work, the tungsten ions below the charge state of 15 have been produced, extracted, and analyzed. The charge-state distributions and spectra in the range of 530-580 nm of tungsten ions have been measured simultaneously with the electron-beam energy of 279 eV and 300 eV, which preliminarily indicates that the 549.9 nm line comes from $W^{14+}$.

قيم البحث

اقرأ أيضاً

106 - J. Stark , C. Warnecke , S. Bogen 2021
We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of $Qapprox2.3times 10^5$ at a temperature of 4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts which limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron beam ion trap and deceleration beamline supplying highly charged ions (HCI), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole mass filter with HCI, and trapping of Doppler-cooled ${}^9text{Be}^+$ Coulomb crystals.
74 - M.S. Ebrahimi , Z. Guo , M. Vogel 2018
We have performed a detailed experimental study of resistive cooling of large ensembles of highly charged ions such as Ar$^{13+}$ in a cryogenic Penning trap. Different from the measurements reported in [M. Vogel et al., Phys. Rev. A, 043412 (2014)], we observe purely exponential cooling behavior when conditions are chosen to allow collisional thermalization of the ions. We provide evidence that in this situation, resistive cooling time constants and final temperatures are independent of the initial ion energy, and that the cooling time constant of a thermalized ion ensemble is identical to the single-ion cooling time constant. For sufficiently high ion number densities, our measurements show discontinuities in the spectra of motional resonances which indicate a transition of the ion ensemble to a fluid-like state when cooled to temperatures below approximately 14 K. With the final ion temperature presently being 7.5 K, ions of the highest charge states are expected to form ion crystals by mere resistive cooling, in particular not requiring the use of laser cooling.
The paper presents the current status of the theory of bound-electron g factor in highly charged ions. The calculations of the relativistic, QED, nuclear recoil, nuclear structure, and interelectronic-interaction corrections to the g factor are revie wed. Special attention is paid to tests of QED effects at strong coupling regime and determinations of the fundamental constants.
312 - P. Micke , S. Kuhn , L. Buchauer 2020
Electron beam ion traps (EBIT) are ideal tools for both production and study of highly charged ions (HCI). In order to reduce their construction, maintenance, and operation costs we have developed a novel, compact, room-temperature design, the Heidel berg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar$^{16+}$ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e. g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe$^{24+}$, achieving an electron-energy resolving power of $E/Delta E > 1500$ at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating resonant photoexcitation of highly charged oxygen.
122 - Q. Lu , C. L. Yan , J. Meng 2021
To provide spectroscopic data for lowly charged tungsten ions relevant to fusion research, this work focuses on the W8+ ion. Six visible spectra lines in the range of 420-660 nm are observed with a compact electron-beam ion trap in Shanghai. These li nes are assigned to W8+ based on their intensity variations as increasing electron-beam energy and the M1 line from the ground configuration in W7+. Furthermore, transition energies are calculated for the 30 lowest levels of the 4f14 5s2 5p4, 4f13 5s2 5p5 and 4f12 5s2 5p6 configurations of W8+ by using the flexible atomic code (FAC) and GRASP package, respectively. Reasonably good agreement is found between our two independent atomic-structure calculations. The resulting atomic parameters are adopted to simulate the spectra based on the collisional-radiative model implemented in the FAC code. This assists us with identification of six strong M1 transitions in 4f13 5s2 5p5 and 4f12 5s2 5p6 configurations from our experiments
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا