ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-embedding based Neural Collaborative Filtering for Recommender Systems

153   0   0.0 ( 0 )
 نشر من قبل Gongshan He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Among various recommender techniques, collaborative filtering (CF) is the most successful one. And a key problem in CF is how to represent users and items. Previous works usually represent a user (an item) as a vector of latent factors (aka. textit{embedding}) and then model the interactions between users and items based on the representations. Despite its effectiveness, we argue that its insufficient to yield satisfactory embeddings for collaborative filtering. Inspired by the idea of SVD++ that represents users based on themselves and their interacted items, we propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering, to utilize historical interactions to enhance the representation. In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation. Extensive experiments on four publicly datasets demonstrated the effectiveness of our proposed DNCF framework by comparing its performance with several traditional matrix factorization models and other state-of-the-art deep learning based recommender models.

قيم البحث

اقرأ أيضاً

We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differ entiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.
63 - Zhihai Yang 2015
Personalization collaborative filtering recommender systems (CFRSs) are the crucial components of popular e-commerce services. In practice, CFRSs are also particularly vulnerable to shilling attacks or profile injection attacks due to their openness. The attackers can carefully inject chosen attack profiles into CFRSs in order to bias the recommendation results to their benefits. To reduce this risk, various detection techniques have been proposed to detect such attacks, which use diverse features extracted from user profiles. However, relying on limited features to improve the detection performance is difficult seemingly, since the existing features can not fully characterize the attack profiles and genuine profiles. In this paper, we propose a novel detection method to make recommender systems resistant to the shilling attacks or profile injection attacks. The existing features can be briefly summarized as two aspects including rating behavior based and item distribution based. We firstly formulate the problem as finding a mapping model between rating behavior and item distribution by exploiting the least-squares approximate solution. Based on the trained model, we design a detector by employing a regressor to detect such attacks. Extensive experiments on both the MovieLens-100K and MovieLens-ml-latest-small datasets examine the effectiveness of our proposed detection method. Experimental results were included to validate the outperformance of our approach in comparison with benchmarked method including KNN.
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gen der bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.
In recent years, text-aware collaborative filtering methods have been proposed to address essential challenges in recommendations such as data sparsity, cold start problem, and long-tail distribution. However, many of these text-oriented methods rely heavily on the availability of text information for every user and item, which obviously does not hold in real-world scenarios. Furthermore, specially designed network structures for text processing are highly inefficient for on-line serving and are hard to integrate into current systems. In this paper, we propose a flexible neural recommendation framework, named Review Regularized Recommendation, short as R3. It consists of a neural collaborative filtering part that focuses on prediction output, and a text processing part that serves as a regularizer. This modular design incorporates text information as richer data sources in the training phase while being highly friendly for on-line serving as it needs no on-the-fly text processing in serving time. Our preliminary results show that by using a simple text processing approach, it could achieve better prediction performance than state-of-the-art text-aware methods.
This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first describe the basic CF-NADE model for CF tasks. Then we propose to improve the model by sharing parameters between different ratings. A factored version of CF-NADE is also proposed for better scalability. Furthermore, we take the ordinal nature of the preferences into consideration and propose an ordinal cost to optimize CF-NADE, which shows superior performance. Finally, CF-NADE can be extended to a deep model, with only moderately increased computational complexity. Experimental results show that CF-NADE with a single hidden layer beats all previous state-of-the-art methods on MovieLens 1M, MovieLens 10M, and Netflix datasets, and adding more hidden layers can further improve the performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا