ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Abnormal Profiles in Collaborative Filtering Recommender Systems

127   0   0.0 ( 0 )
 نشر من قبل Zhihai Yang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zhihai Yang




اسأل ChatGPT حول البحث

Personalization collaborative filtering recommender systems (CFRSs) are the crucial components of popular e-commerce services. In practice, CFRSs are also particularly vulnerable to shilling attacks or profile injection attacks due to their openness. The attackers can carefully inject chosen attack profiles into CFRSs in order to bias the recommendation results to their benefits. To reduce this risk, various detection techniques have been proposed to detect such attacks, which use diverse features extracted from user profiles. However, relying on limited features to improve the detection performance is difficult seemingly, since the existing features can not fully characterize the attack profiles and genuine profiles. In this paper, we propose a novel detection method to make recommender systems resistant to the shilling attacks or profile injection attacks. The existing features can be briefly summarized as two aspects including rating behavior based and item distribution based. We firstly formulate the problem as finding a mapping model between rating behavior and item distribution by exploiting the least-squares approximate solution. Based on the trained model, we design a detector by employing a regressor to detect such attacks. Extensive experiments on both the MovieLens-100K and MovieLens-ml-latest-small datasets examine the effectiveness of our proposed detection method. Experimental results were included to validate the outperformance of our approach in comparison with benchmarked method including KNN.



قيم البحث

اقرأ أيضاً

Among various recommender techniques, collaborative filtering (CF) is the most successful one. And a key problem in CF is how to represent users and items. Previous works usually represent a user (an item) as a vector of latent factors (aka. textit{e mbedding}) and then model the interactions between users and items based on the representations. Despite its effectiveness, we argue that its insufficient to yield satisfactory embeddings for collaborative filtering. Inspired by the idea of SVD++ that represents users based on themselves and their interacted items, we propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering, to utilize historical interactions to enhance the representation. In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation. Extensive experiments on four publicly datasets demonstrated the effectiveness of our proposed DNCF framework by comparing its performance with several traditional matrix factorization models and other state-of-the-art deep learning based recommender models.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differ entiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.
Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the tr aditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, because causal/counterfactual modeling can help us to think outside of the observational data for user modeling and personalization. In this paper, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommendation. We first provide a unified causal view of CF and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for $do$-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.
Online streaming services have become the most popular way of listening to music. The majority of these services are endowed with recommendation mechanisms that help users to discover songs and artists that may interest them from the vast amount of m usic available. However, many are not reliable as they may not take into account contextual aspects or the ever-evolving user behavior. Therefore, it is necessary to develop systems that consider these aspects. In the field of music, time is one of the most important factors influencing user preferences and managing its effects, and is the motivation behind the work presented in this paper. Here, the temporal information regarding when songs are played is examined. The purpose is to model both the evolution of user preferences in the form of evolving implicit ratings and user listening behavior. In the collaborative filtering method proposed in this work, daily listening habits are captured in order to characterize users and provide them with more reliable recommendations. The results of the validation prove that this approach outperforms other methods in generating both context-aware and context-free recommendations
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender syst ems. These methods often make recommendations based on the learned user and item embeddings. However, we found that they do not perform well wit sparse user-item graphs which are quite common in real-world recommendations. Therefore, in this work, we introduce a novel perspective to build GNN-based CF methods for recommendations which leads to the proposed framework Localized Graph Collaborative Filtering (LGCF). One key advantage of LGCF is that it does not need to learn embeddings for each user and item, which is challenging in sparse scenarios. Alternatively, LGCF aims at encoding useful CF information into a localized graph and making recommendations based on such graph. Extensive experiments on various datasets validate the effectiveness of LGCF especially in sparse scenarios. Furthermore, empirical results demonstrate that LGCF provides complementary information to the embedding-based CF model which can be utilized to boost recommendation performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا