ترغب بنشر مسار تعليمي؟ اضغط هنا

A Neural Autoregressive Approach to Collaborative Filtering

211   0   0.0 ( 0 )
 نشر من قبل Yin Zheng
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first describe the basic CF-NADE model for CF tasks. Then we propose to improve the model by sharing parameters between different ratings. A factored version of CF-NADE is also proposed for better scalability. Furthermore, we take the ordinal nature of the preferences into consideration and propose an ordinal cost to optimize CF-NADE, which shows superior performance. Finally, CF-NADE can be extended to a deep model, with only moderately increased computational complexity. Experimental results show that CF-NADE with a single hidden layer beats all previous state-of-the-art methods on MovieLens 1M, MovieLens 10M, and Netflix datasets, and adding more hidden layers can further improve the performance.



قيم البحث

اقرأ أيضاً

A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gen der bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.
This paper proposes implicit CF-NADE, a neural autoregressive model for collaborative filtering tasks using implicit feedback ( e.g. click, watch, browse behaviors). We first convert a users implicit feedback into a like vector and a confidence vecto r, and then model the probability of the like vector, weighted by the confidence vector. The training objective of implicit CF-NADE is to maximize a weighted negative log-likelihood. We test the performance of implicit CF-NADE on a dataset collected from a popular digital TV streaming service. More specifically, in the experiments, we describe how to convert watch counts into implicit relative rating, and feed into implicit CF-NADE. Then we compare the performance of implicit CF-NADE model with the popular implicit matrix factorization approach. Experimental results show that implicit CF-NADE significantly outperforms the baseline.
In recent years, text-aware collaborative filtering methods have been proposed to address essential challenges in recommendations such as data sparsity, cold start problem, and long-tail distribution. However, many of these text-oriented methods rely heavily on the availability of text information for every user and item, which obviously does not hold in real-world scenarios. Furthermore, specially designed network structures for text processing are highly inefficient for on-line serving and are hard to integrate into current systems. In this paper, we propose a flexible neural recommendation framework, named Review Regularized Recommendation, short as R3. It consists of a neural collaborative filtering part that focuses on prediction output, and a text processing part that serves as a regularizer. This modular design incorporates text information as richer data sources in the training phase while being highly friendly for on-line serving as it needs no on-the-fly text processing in serving time. Our preliminary results show that by using a simple text processing approach, it could achieve better prediction performance than state-of-the-art text-aware methods.
264 - Le Wu , Xiangnan He , Xiang Wang 2021
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant pro gress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
Collaborative Filtering (CF) is one of the most used methods for Recommender System. Because of the Bayesian nature and nonlinearity, deep generative models, e.g. Variational Autoencoder (VAE), have been applied into CF task, and have achieved great performance. However, most VAE-based methods suffer from matrix sparsity and consider the prior of users latent factors to be the same, which leads to poor latent representations of users and items. Additionally, most existing methods model latent factors of users only and but not items, which makes them not be able to recommend items to a new user. To tackle these problems, we propose a Neural Variational Hybrid Collaborative Filtering, NVHCF. Specifically, we consider both the generative processes of users and items, and the prior of latent factors of users and items to be side informationspecific, which enables our model to alleviate matrix sparsity and learn better latent representations of users and items. For inference purpose, we derived a Stochastic Gradient Variational Bayes (SGVB) algorithm to analytically approximate the intractable distributions of latent factors of users and items. Experiments conducted on two large datasets have showed our methods significantly outperform the state-of-the-art CF methods, including the VAE-based methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا