ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces

182   0   0.0 ( 0 )
 نشر من قبل Sensong An
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Metasurfaces have provided a novel and promising platform for the realization of compact and large-scale optical devices. The conventional metasurface design approach assumes periodic boundary conditions for each element, which is inaccurate in most cases since the near-field coupling effects between elements will change when surrounded by non-identical structures. In this paper, we propose a deep learning approach to predict the actual electromagnetic (EM) responses of each target meta-atom placed in a large array with near-field coupling effects taken into account. The predicting neural network takes the physical specifications of the target meta-atom and its neighbors as input, and calculates its phase and amplitude in milliseconds. This approach can be applied to explain metasurfaces performance deterioration caused by mutual coupling and further used to optimize their efficiencies once combined with optimization algorithms. To demonstrate the efficacy of this methodology, we obtain large improvements in efficiency for a beam deflector and a metalens over the conventional design approach. Moreover, we show the correlations between a metasurfaces performance and its design errors caused by mutual coupling are not bound to certain specifications (materials, shapes, etc.). As such, we envision that this approach can be readily applied to explore the mutual coupling effects and improve the performance of various metasurface designs.

قيم البحث

اقرأ أيضاً

Deep neural networks can suffer from the exploding and vanishing activation problem, in which the networks fail to train properly because the neural signals either amplify or attenuate across the layers and become saturated. While other normalization methods aim to fix the stated problem, most of them have inference speed penalties in those applications that require running averages of the neural activations. Here we extend the unitary framework based on Lie algebra to neural networks of any dimensionalities, overcoming the major constraints of the prior arts that limit synaptic weights to be square matrices. Our proposed unitary convolutional neural networks deliver up to 32% faster inference speeds and up to 50% reduction in permanent hard disk space while maintaining competitive prediction accuracy.
Standard convolutional neural networks assume a grid structured input is available and exploit discrete convolutions as their fundamental building blocks. This limits their applicability to many real-world applications. In this paper we propose Param etric Continuous Convolution, a new learnable operator that operates over non-grid structured data. The key idea is to exploit parameterized kernel functions that span the full continuous vector space. This generalization allows us to learn over arbitrary data structures as long as their support relationship is computable. Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes, and lidar motion estimation of driving scenes.
This Letter presents an investigation on the effects of mutual coupling in a metamaterial comprising two sets of electric-LC (ELC) resonators with different resonance frequencies. Through simulation and experiment, it is found that the two resonances experience significant shifting and weakening as they become spectrally close. An equivalent circuit model suggests that inductive coupling among the two resonator sets is a primary cause of the change in the resonance properties. This study is fundamental to designing metamaterials with an extended bandwidth or spatially variable response.
Metasurfaces have become a promising means for manipulating optical wavefronts in flat and high-performance optical devices. Conventional metasurface device design relies on trial-and-error methods to obtain target electromagnetic (EM) response, an a pproach that demands significant efforts to investigate the enormous number of possible meta-atom structures. In this paper, a deep neural network approach is introduced that significantly improves on both speed and accuracy compared to techniques currently used to assemble metasurface-based devices. Our neural network approach overcomes three key challenges that have limited previous neural-network-based design schemes: input/output vector dimensional mismatch, accurate EM-wave phase prediction, as well as adaptation to 3-D dielectric structures, and can be generically applied to a wide variety of metasurface device designs across the entire electromagnetic spectrum. Using this new methodology, examples of neural networks capable of producing on-demand designs for meta-atoms, metasurface filters, and phase-change reconfigurable metasurfaces are demonstrated.
Deep convolutional neural networks (CNNs) have been actively adopted in the field of music information retrieval, e.g. genre classification, mood detection, and chord recognition. However, the process of learning and prediction is little understood, particularly when it is applied to spectrograms. We introduce auralisation of a CNN to understand its underlying mechanism, which is based on a deconvolution procedure introduced in [2]. Auralisation of a CNN is converting the learned convolutional features that are obtained from deconvolution into audio signals. In the experiments and discussions, we explain trained features of a 5-layer CNN based on the deconvolved spectrograms and auralised signals. The pairwise correlations per layers with varying different musical attributes are also investigated to understand the evolution of the learnt features. It is shown that in the deep layers, the features are learnt to capture textures, the patterns of continuous distributions, rather than shapes of lines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا