ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of mutual coupling in dual-resonance metamaterials

199   0   0.0 ( 0 )
 نشر من قبل Withawat Withayachumnankul
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This Letter presents an investigation on the effects of mutual coupling in a metamaterial comprising two sets of electric-LC (ELC) resonators with different resonance frequencies. Through simulation and experiment, it is found that the two resonances experience significant shifting and weakening as they become spectrally close. An equivalent circuit model suggests that inductive coupling among the two resonator sets is a primary cause of the change in the resonance properties. This study is fundamental to designing metamaterials with an extended bandwidth or spatially variable response.



قيم البحث

اقرأ أيضاً

Metasurfaces have provided a novel and promising platform for the realization of compact and large-scale optical devices. The conventional metasurface design approach assumes periodic boundary conditions for each element, which is inaccurate in most cases since the near-field coupling effects between elements will change when surrounded by non-identical structures. In this paper, we propose a deep learning approach to predict the actual electromagnetic (EM) responses of each target meta-atom placed in a large array with near-field coupling effects taken into account. The predicting neural network takes the physical specifications of the target meta-atom and its neighbors as input, and calculates its phase and amplitude in milliseconds. This approach can be applied to explain metasurfaces performance deterioration caused by mutual coupling and further used to optimize their efficiencies once combined with optimization algorithms. To demonstrate the efficacy of this methodology, we obtain large improvements in efficiency for a beam deflector and a metalens over the conventional design approach. Moreover, we show the correlations between a metasurfaces performance and its design errors caused by mutual coupling are not bound to certain specifications (materials, shapes, etc.). As such, we envision that this approach can be readily applied to explore the mutual coupling effects and improve the performance of various metasurface designs.
Semiconductor-based layered hyperbolic metamaterials (HMMs) house high-wavevector volume plasmon polariton (VPP) modes in the infrared spectral range. VPP modes have successfully been exploited in the weak-coupling regime through the enhanced Purcell effect. In this paper, we experimentally demonstrate strong coupling between the VPP modes in a semiconductor HMM and the intersubband transition of epitaxially-embedded quantum wells. We observe clear anticrossings in the dispersion curves for the zeroth-, first-, second-, and third-order VPP modes, resulting in upper and lower polariton branches for each mode. This demonstration sets the stage for the creation of novel infrared optoelectronic structures combining HMMs with embedded epitaxial emitter or detector structures.
Nonlocal (spatial-dispersion) effects in multilayered metamaterials composed of periodic stacks of alternating, deeply subwavelength dielectric layers are known to be negligibly weak. Counterintuitively, under certain critical conditions, weak nonloc ality may build up strong boundary effects that are not captured by conventional (local) effective-medium models based on simple mixing formulas. Here, we show that this phenomenon can be fruitfully studied and understood in terms of error propagation in the iterated maps of the trace and anti-trace of the optical transfer matrix of the multilayer. Our approach effectively parameterizes these peculiar effects via remarkably simple and insightful closed-form expressions, which enable direct identification of the critical parameters and regimes. We also show how these boundary effects can be captured by suitable nonlocal corrections.
Hyperbolic Metamaterials (HMMs) have recently garnered much attention because they possess the ability for broadband manipulation of the photon density of states and sub-wavelength light confinement. However, a major difficulty arises with the coupli ng of light out of HMMs due to strong confinement of the electromagnetic field in states with high momentum called high-k modes which become evanescent outside the structure. Here we report the first demonstration of directional out-coupling of light from high-k modes in an active HMM using a high index bulls-eye grating. Quantum dots (QDs) embedded underneath the metamaterial show highly directional emission through the propagation and out-coupling of resonance cones which are a unique feature of hyperbolic media. This demonstration of efficient out-coupling of light from active HMMs could pave the way for developing practical photonic devices using these systems.
107 - C. Rizza , E. Palange , P. Carelli 2009
We will report on the electromagnetic response due to induced dipolar currents in metamaterials of 2-dimensional array of metallic elements. Used as frequency selectors, the metamaterial transmittance presents a single resonance in the region from 1 to 8 THz that can be easily selected and scaled maintaining unaltered the quality factor by choosing the size and shape of the planar metallic element and exploiting the scalability properties of the Maxwell equations. Basing on these studies, we have designed and tested a series of simple and inexpensive frequency selective metamaterials fabricated by using lithographic processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا