ﻻ يوجد ملخص باللغة العربية
There are many deep learning (e.g., DNN) powered mobile and wearable applications today continuously and unobtrusively sensing the ambient surroundings to enhance all aspects of human lives. To enable robust and private mobile sensing, DNN tends to be deployed locally on the resource-constrained mobile devices via model compression. The current practice either hand-crafted DNN compression techniques, i.e., for optimizing DNN-relative performance (e.g., parameter size), or on-demand DNN compression methods, i.e., for optimizing hardware-dependent metrics (e.g., latency), cannot be locally online because they require offline retraining to ensure accuracy. Also, none of them have correlated their efforts with runtime adaptive compression to consider the dynamic nature of the deployment context of mobile applications. To address those challenges, we present AdaSpring, a context-adaptive and self-evolutionary DNN compression framework. It enables the runtime adaptive DNN compression locally online. Specifically, it presents the ensemble training of a retraining-free and self-evolutionary network to integrate multiple alternative DNN compression configurations (i.e., compressed architectures and weights). It then introduces the runtime search strategy to quickly search for the most suitable compression configurations and evolve the corresponding weights. With evaluation on five tasks across three platforms and a real-world case study, experiment outcomes show that AdaSpring obtains up to 3.1x latency reduction, 4.2 x energy efficiency improvement in DNNs, compared to hand-crafted compression techniques, while only incurring <= 6.2ms runtime-evolution latency.
Recent years have witnessed an explosive growth of mobile devices. Mobile devices are permeating every aspect of our daily lives. With the increasing usage of mobile devices and intelligent applications, there is a soaring demand for mobile applicati
Transformer-based deep learning models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. In this paper, we propose a compression-compilation co-design framework that can guarantee the identified model to me
Deep Neural Network (DNN) has gained unprecedented performance due to its automated feature extraction capability. This high order performance leads to significant incorporation of DNN models in different Internet of Things (IoT) applications in the
The neural ordinary differential equation (neural ODE) model has attracted increasing attention in time series analysis for its capability to process irregular time steps, i.e., data are not observed over equally-spaced time intervals. In multi-dimen
This paper describes a set of neural network architectures, called Prediction Neural Networks Set (PNNS), based on both fully-connected and convolutional neural networks, for intra image prediction. The choice of neural network for predicting a given