ترغب بنشر مسار تعليمي؟ اضغط هنا

AdaSpring: Context-adaptive and Runtime-evolutionary Deep Model Compression for Mobile Applications

227   0   0.0 ( 0 )
 نشر من قبل Sicong Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There are many deep learning (e.g., DNN) powered mobile and wearable applications today continuously and unobtrusively sensing the ambient surroundings to enhance all aspects of human lives. To enable robust and private mobile sensing, DNN tends to be deployed locally on the resource-constrained mobile devices via model compression. The current practice either hand-crafted DNN compression techniques, i.e., for optimizing DNN-relative performance (e.g., parameter size), or on-demand DNN compression methods, i.e., for optimizing hardware-dependent metrics (e.g., latency), cannot be locally online because they require offline retraining to ensure accuracy. Also, none of them have correlated their efforts with runtime adaptive compression to consider the dynamic nature of the deployment context of mobile applications. To address those challenges, we present AdaSpring, a context-adaptive and self-evolutionary DNN compression framework. It enables the runtime adaptive DNN compression locally online. Specifically, it presents the ensemble training of a retraining-free and self-evolutionary network to integrate multiple alternative DNN compression configurations (i.e., compressed architectures and weights). It then introduces the runtime search strategy to quickly search for the most suitable compression configurations and evolve the corresponding weights. With evaluation on five tasks across three platforms and a real-world case study, experiment outcomes show that AdaSpring obtains up to 3.1x latency reduction, 4.2 x energy efficiency improvement in DNNs, compared to hand-crafted compression techniques, while only incurring <= 6.2ms runtime-evolution latency.

قيم البحث

اقرأ أيضاً

129 - Ji Wang , Bokai Cao , Philip S. Yu 2018
Recent years have witnessed an explosive growth of mobile devices. Mobile devices are permeating every aspect of our daily lives. With the increasing usage of mobile devices and intelligent applications, there is a soaring demand for mobile applicati ons with machine learning services. Inspired by the tremendous success achieved by deep learning in many machine learning tasks, it becomes a natural trend to push deep learning towards mobile applications. However, there exist many challenges to realize deep learning in mobile applications, including the contradiction between the miniature nature of mobile devices and the resource requirement of deep neural networks, the privacy and security concerns about individuals data, and so on. To resolve these challenges, during the past few years, great leaps have been made in this area. In this paper, we provide an overview of the current challenges and representative achievements about pushing deep learning on mobile devices from three aspects: training with mobile data, efficient inference on mobile devices, and applications of mobile deep learning. The former two aspects cover the primary tasks of deep learning. Then, we go through our two recent applications that apply the data collected by mobile devices to inferring mood disturbance and user identification. Finally, we conclude this paper with the discussion of the future of this area.
Transformer-based deep learning models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. In this paper, we propose a compression-compilation co-design framework that can guarantee the identified model to me et both resource and real-time specifications of mobile devices. Our framework applies a compiler-aware neural architecture optimization method (CANAO), which can generate the optimal compressed model that balances both accuracy and latency. We are able to achieve up to 7.8x speedup compared with TensorFlow-Lite with only minor accuracy loss. We present two types of BERT applications on mobile devices: Question Answering (QA) and Text Generation. Both can be executed in real-time with latency as low as 45ms. Videos for demonstrating the framework can be found on https://www.youtube.com/watch?v=_WIRvK_2PZI
Deep Neural Network (DNN) has gained unprecedented performance due to its automated feature extraction capability. This high order performance leads to significant incorporation of DNN models in different Internet of Things (IoT) applications in the past decade. However, the colossal requirement of computation, energy, and storage of DNN models make their deployment prohibitive on resource constraint IoT devices. Therefore, several compression techniques were proposed in recent years for reducing the storage and computation requirements of the DNN model. These techniques on DNN compression have utilized a different perspective for compressing DNN with minimal accuracy compromise. It encourages us to make a comprehensive overview of the DNN compression techniques. In this paper, we present a comprehensive review of existing literature on compressing DNN model that reduces both storage and computation requirements. We divide the existing approaches into five broad categories, i.e., network pruning, sparse representation, bits precision, knowledge distillation, and miscellaneous, based upon the mechanism incorporated for compressing the DNN model. The paper also discussed the challenges associated with each category of DNN compression techniques. Finally, we provide a quick summary of existing work under each category with the future direction in DNN compression.
The neural ordinary differential equation (neural ODE) model has attracted increasing attention in time series analysis for its capability to process irregular time steps, i.e., data are not observed over equally-spaced time intervals. In multi-dimen sional time series analysis, a task is to conduct evolutionary subspace clustering, aiming at clustering temporal data according to their evolving low-dimensional subspace structures. Many existing methods can only process time series with regular time steps while time series are unevenly sampled in many situations such as missing data. In this paper, we propose a neural ODE model for evolutionary subspace clustering to overcome this limitation and a new objective function with subspace self-expressiveness constraint is introduced. We demonstrate that this method can not only interpolate data at any time step for the evolutionary subspace clustering task, but also achieve higher accuracy than other state-of-the-art evolutionary subspace clustering methods. Both synthetic and real-world data are used to illustrate the efficacy of our proposed method.
129 - Thierry Dumas 2018
This paper describes a set of neural network architectures, called Prediction Neural Networks Set (PNNS), based on both fully-connected and convolutional neural networks, for intra image prediction. The choice of neural network for predicting a given image block depends on the block size, hence does not need to be signalled to the decoder. It is shown that, while fully-connected neural networks give good performance for small block sizes, convolutional neural networks provide better predictions in large blocks with complex textures. Thanks to the use of masks of random sizes during training, the neural networks of PNNS well adapt to the available context that may vary, depending on the position of the image block to be predicted. When integrating PNNS into a H.265 codec, PSNR-rate performance gains going from 1.46% to 5.20% are obtained. These gains are on average 0.99% larger than those of prior neural network based methods. Unlike the H.265 intra prediction modes, which are each specialized in predicting a specific texture, the proposed PNNS can model a large set of complex textures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا