ترغب بنشر مسار تعليمي؟ اضغط هنا

A Compression-Compilation Framework for On-mobile Real-time BERT Applications

96   0   0.0 ( 0 )
 نشر من قبل Zhenglun Kong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformer-based deep learning models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. In this paper, we propose a compression-compilation co-design framework that can guarantee the identified model to meet both resource and real-time specifications of mobile devices. Our framework applies a compiler-aware neural architecture optimization method (CANAO), which can generate the optimal compressed model that balances both accuracy and latency. We are able to achieve up to 7.8x speedup compared with TensorFlow-Lite with only minor accuracy loss. We present two types of BERT applications on mobile devices: Question Answering (QA) and Text Generation. Both can be executed in real-time with latency as low as 45ms. Videos for demonstrating the framework can be found on https://www.youtube.com/watch?v=_WIRvK_2PZI



قيم البحث

اقرأ أيضاً

The rapid development and wide utilization of object detection techniques have aroused attention on both accuracy and speed of object detectors. However, the current state-of-the-art object detection works are either accuracy-oriented using a large m odel but leading to high latency or speed-oriented using a lightweight model but sacrificing accuracy. In this work, we propose YOLObile framework, a real-time object detection on mobile devices via compression-compilation co-design. A novel block-punched pruning scheme is proposed for any kernel size. To improve computational efficiency on mobile devices, a GPU-CPU collaborative scheme is adopted along with advanced compiler-assisted optimizations. Experimental results indicate that our pruning scheme achieves 14$times$ compression rate of YOLOv4 with 49.0 mAP. Under our YOLObile framework, we achieve 17 FPS inference speed using GPU on Samsung Galaxy S20. By incorporating our proposed GPU-CPU collaborative scheme, the inference speed is increased to 19.1 FPS, and outperforms the original YOLOv4 by 5$times$ speedup. Source code is at: url{https://github.com/nightsnack/YOLObile}.
It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices because even the powerful modern mobile devices are considered as ``resource-constrained when executing large-scale DNNs. It necessitates the s parse model inference via weight pruning, i.e., DNN weight sparsity, and it is desirable to design a new DNN weight sparsity scheme that can facilitate real-time inference on mobile devices while preserving a high sparse model accuracy. This paper designs a novel mobile inference acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) and that achieves Real-time execution and high accuracy, leveraging fine-grained structured sparse model Inference and compiler optimizations for Mobiles. We start by proposing a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning. Based on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for real-time mobile inference; and (b) the BCR pruning optimizations for determining pruning hyperparameters and performing weight pruning. We compare GRIM with Alibaba MNN, TVM, TensorFlow-Lite, a sparse implementation based on CSR, PatDNN, and ESE (a representative FPGA inference acceleration framework for RNNs), and achieve up to 14.08x speedup.
88 - Zhengang Li , Geng Yuan , Wei Niu 2020
With the increasing demand to efficiently deploy DNNs on mobile edge devices, it becomes much more important to reduce unnecessary computation and increase the execution speed. Prior methods towards this goal, including model compression and network architecture search (NAS), are largely performed independently and do not fully consider compiler-level optimizations which is a must-do for mobile acceleration. In this work, we first propose (i) a general category of fine-grained structured pruning applicable to various DNN layers, and (ii) a comprehensive, compiler automatic code generation framework supporting different DNNs and different pruning schemes, which bridge the gap of model compression and NAS. We further propose NPAS, a compiler-aware unified network pruning, and architecture search. To deal with large search space, we propose a meta-modeling procedure based on reinforcement learning with fast evaluation and Bayesian optimization, ensuring the total number of training epochs comparable with representative NAS frameworks. Our framework achieves 6.7ms, 5.9ms, 3.9ms ImageNet inference times with 78.2%, 75% (MobileNet-V3 level), and 71% (MobileNet-V2 level) Top-1 accuracy respectively on an off-the-shelf mobile phone, consistently outperforming prior work.
Assuming hardware is the major constraint for enabling real-time mobile intelligence, the industry has mainly dedicated their efforts to developing specialized hardware accelerators for machine learning and inference. This article challenges the assu mption. By drawing on a recent real-time AI optimization framework CoCoPIE, it maintains that with effective compression-compiler co-design, it is possible to enable real-time artificial intelligence on mainstream end devices without special hardware. CoCoPIE is a software framework that holds numerous records on mobile AI: the first framework that supports all main kinds of DNNs, from CNNs to RNNs, transformer, language models, and so on; the fastest DNN pruning and acceleration framework, up to 180X faster compared with current DNN pruning on other frameworks such as TensorFlow-Lite; making many representative AI applications able to run in real-time on off-the-shelf mobile devices that have been previously regarded possible only with special hardware support; making off-the-shelf mobile devices outperform a number of representative ASIC and FPGA solutions in terms of energy efficiency and/or performance.
156 - Pu Zhao , Wei Niu , Geng Yuan 2020
3D object detection is an important task, especially in the autonomous driving application domain. However, it is challenging to support the real-time performance with the limited computation and memory resources on edge-computing devices in self-dri ving cars. To achieve this, we propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques, to enable real-time inference of 3D object detection on the resource-limited edge-computing devices. Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically, without human expertise and assistance. And the evaluated performance of the unified schemes can be fed back to train the generator RNN. The experimental results demonstrate that the proposed framework firstly achieves real-time 3D object detection on mobile devices (Samsung Galaxy S20 phone) with competitive detection performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا