ترغب بنشر مسار تعليمي؟ اضغط هنا

Context-adaptive neural network based prediction for image compression

130   0   0.0 ( 0 )
 نشر من قبل Thierry Dumas
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Thierry Dumas




اسأل ChatGPT حول البحث

This paper describes a set of neural network architectures, called Prediction Neural Networks Set (PNNS), based on both fully-connected and convolutional neural networks, for intra image prediction. The choice of neural network for predicting a given image block depends on the block size, hence does not need to be signalled to the decoder. It is shown that, while fully-connected neural networks give good performance for small block sizes, convolutional neural networks provide better predictions in large blocks with complex textures. Thanks to the use of masks of random sizes during training, the neural networks of PNNS well adapt to the available context that may vary, depending on the position of the image block to be predicted. When integrating PNNS into a H.265 codec, PSNR-rate performance gains going from 1.46% to 5.20% are obtained. These gains are on average 0.99% larger than those of prior neural network based methods. Unlike the H.265 intra prediction modes, which are each specialized in predicting a specific texture, the proposed PNNS can model a large set of complex textures.

قيم البحث

اقرأ أيضاً

The field of neural image compression has witnessed exciting progress as recently proposed architectures already surpass the established transform coding based approaches. While, so far, research has mainly focused on architecture and model improveme nts, in this work we explore content adaptive optimization. To this end, we introduce an iterative procedure which adapts the latent representation to the specific content we wish to compress while keeping the parameters of the network and the predictive model fixed. Our experiments show that this allows for an overall increase in rate-distortion performance, independently of the specific architecture used. Furthermore, we also evaluate this strategy in the context of adapting a pretrained network to other content that is different in visual appearance or resolution. Here, our experiments show that our adaptation strategy can largely close the gap as compared to models specifically trained for the given content while having the benefit that no additional data in the form of model parameter updates has to be transmitted.
Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on autoencoders, that first encode an image into low-dimensional latent representations and t hen decode them for reconstruction purposes. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to build an entropy model, which estimates the bit-rate for end-to-end rate-distortion optimization. However, such an entropy model is suboptimal from two aspects: (1) It fails to capture spatially global correlations among the latents. (2) Cross-channel relationships of the latents are still underexplored. In this paper, we propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space. A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts. Furthermore, we propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points. Both these two models facilitate entropy estimation without the transmission of overhead. In addition, we further adopt a new separate attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.
We propose Neural Image Compression (NIC), a two-step method to build convolutional neural networks for gigapixel image analysis solely using weak image-level labels. First, gigapixel images are compressed using a neural network trained in an unsuper vised fashion, retaining high-level information while suppressing pixel-level noise. Second, a convolutional neural network (CNN) is trained on these compressed image representations to predict image-level labels, avoiding the need for fine-grained manual annotations. We compared several encoding strategies, namely reconstruction error minimization, contrastive training and adversarial feature learning, and evaluated NIC on a synthetic task and two public histopathology datasets. We found that NIC can exploit visual cues associated with image-level labels successfully, integrating both global and local visual information. Furthermore, we visualized the regions of the input gigapixel images where the CNN attended to, and confirmed that they overlapped with annotations from human experts.
Digital holography enables us to reconstruct objects in three-dimensional space from holograms captured by an imaging device. For the reconstruction, we need to know the depth position of the recoded object in advance. In this study, we propose depth prediction using convolutional neural network (CNN)-based regression. In the previous researches, the depth of an object was estimated through reconstructed images at different depth positions from a hologram using a certain metric that indicates the most focused depth position; however, such a depth search is time-consuming. The CNN of the proposed method can directly predict the depth position with millimeter precision from holograms.
In this work we present a new framework for neural networks compression with fine-tuning, which we called Neural Network Compression Framework (NNCF). It leverages recent advances of various network compression methods and implements some of them, su ch as sparsity, quantization, and binarization. These methods allow getting more hardware-friendly models which can be efficiently run on general-purpose hardware computation units (CPU, GPU) or special Deep Learning accelerators. We show that the developed methods can be successfully applied to a wide range of models to accelerate the inference time while keeping the original accuracy. The framework can be used within the training samples, which are supplied with it, or as a standalone package that can be seamlessly integrated into the existing training code with minimal adaptations. Currently, a PyTorch version of NNCF is available as a part of OpenVINO Training Extensions at https://github.com/openvinotoolkit/nncf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا