ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Planetary Transit Candidates in TESS Full-Frame Image Light Curves via Convolutional Neural Networks

115   0   0.0 ( 0 )
 نشر من قبل Greg Olmschenk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~75% of the sky throughout its two year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets. To search this vast data trove for transit signals, we aim to provide an approach that is both computationally efficient and produces highly performant predictions. This approach minimizes the required human search effort. We present a convolutional neural network, which we train to identify planetary transit signals and dismiss false positives. To make a prediction for a given light curve, our network requires no prior transit parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present 181 new planet candidates identified by our network, which pass subsequent human vetting designed to rule out false positives. Our neural network model is additionally provided as open-source code for public use and extension.



قيم البحث

اقرأ أيضاً

Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that Convolutional Neural Networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training datasets we compare both real data with injected planetary transits and fully-simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled lightcurves can be utilised, while still achieving competitive results. With our best model, we achieve an AUC (area under the curve) score of $(95.6pm{0.2})%$ and an accuracy of $(88.5pm{0.3})%$ on our unseen test data, as well as $(76.5pm{0.4})%$ and $(74.6pm{1.1})%$ in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training dataset, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters.
Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates from space-based survey missions increases. This is especially true for NASAs TESS mission which generates thousands of new candidates each month. Here we created the first deep learning model capable of classifying TESS planet candidates. We adapted the neural network model of Ansdell et al. (2018) to TESS data. We then trained and tested this updated model on 4 sectors of high-fidelity, pixel-level simulations data created using the Lilith simulator and processed using the full TESS SPOC pipeline. We find our model performs very well on our simulated data, with 97% average precision and 92% accuracy on planets in the 2-class model. This accuracy is also boosted by another ~4% if planets found at the wrong periods are included. We also performed 3- and 4-class classification of planets, blended & target eclipsing binaries, and non-astrophysical false positives, which have slightly lower average precision and planet accuracies, but are useful for follow-up decisions. When applied to real TESS data, 61% of TCEs coincident with currently published TOIs are recovered as planets, 4% more are suggested to be EBs, and we propose a further 200 TCEs as planet candidates.
The majority of observed pixels on the Transiting Exoplanet Survey Satellite (TESS) are delivered in the form of full frame images (FFI). However, the FFIs contain systematic effects such as pointing jitter and scattered light from the Earth and Moon that must be removed before downstream analysis. We present unpopular, an open-source Python package to de-trend TESS FFI light curves based on the causal pixel model method. Under the assumption that shared flux variations across multiple distant pixels are likely to be systematics, unpopular removes these common (i.e., popular) trends by modeling the systematics in a given pixels light curve as a linear combination of light curves from many other distant pixels. To prevent overfitting we employ ridge regression and a train-and-test framework where the data points being de-trended are separated from those used to obtain the model coefficients. We also allow for simultaneous fitting with a polynomial model to capture any long-term astrophysical trends. We validate our method by de-trending different sources (e.g., supernova, tidal disruption event, exoplanet-hosting star, fast rotating star) and comparing our light curves to those obtained by other pipelines when appropriate. We also show that unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data. The unpopular source code and tutorials are freely available online.
Many moons have been detected around planets in our Solar System, but none has been detected unambiguously around any of the confirmed extrasolar planets. We test the feasibility of a supervised convolutional neural network to classify photometric tr ansit light curves of planet-host stars and identify exomoon transits, while avoiding false positives caused by stellar variability or instrumental noise. Convolutional neural networks are known to have contributed to improving the accuracy of classification tasks. The network optimization is typically performed without studying the effect of noise on the training process. Here we design and optimize a 1D convolutional neural network to classify photometric transit light curves. We regularize the network by the total variation loss in order to remove unwanted variations in the data features. Using numerical experiments, we demonstrate the benefits of our network, which produces results comparable to or better than the standard network solutions. Most importantly, our network clearly outperforms a classical method used in exoplanet science to identify moon-like signals. Thus the proposed network is a promising approach for analyzing real transit light curves in the future.
We present results of a study on identifying circumbinary planet candidates that produce multiple transits during one conjunction with eclipsing binary systems. The occurrence of these transits enables us to estimate the candidates orbital periods, w hich is crucial as the periods of the currently known transiting circumbinary planets are significantly longer than the typical observational baseline of TESS. Combined with the derived radii, it also provides valuable information needed for follow-up observations and subsequent confirmation of a large number of circumbinary planet candidates from TESS. Motivated by the discovery of the 1108-day circumbinary planet Kepler-1647, we show the application of this technique to four of Keplers circumbinary planets that produce such transits. Our results indicate that in systems where the circumbinary planet is on a low-eccentricity orbit, the estimated planetary orbital period is within <10-20% of the true value. This estimate is derived from photometric observations spanning less than 5% of the planets period, demonstrating the strong capability of the technique. Capitalizing on the current and future eclipsing binaries monitored by NASAs TESS mission, we estimate that hundreds of circumbinary planets candidates producing multiple transits during one conjunction will be detected in the TESS data. Such a large sample will enable statistical understanding of the population of planets orbiting binary stars and shed new light on their formation and evolution.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا